Расчёт стропильной системы

Расчетная снеговая нагрузка

Нормативное значение только основа для расчета реально возможного веса снега. Просто использовать нормативное значение для расчета прочности нельзя, так как:

  • скаты крыши могут быть наклонными, снег будет разложен на большей площади;
  • ветра, сдувающие снег с кровли, в каждой местности свои;
  • окружающие строения изменяют влияние ветров;
  • теплопроводность крыши может привести к ускоренному таянию и снижению веса.

Для проектирования крыши с необходимой и достаточной надежной конструкцией следует учесть все факторы, влияющие на реальную ситуацию.

Формула расчета

Обязательная для применения проектировщиками формула вычисления снеговой нагрузки дана в СП 20.13330.2016 и выглядит следующим образом: S 0 = c b c t µ S g.

При расчете нормативная нагрузка S g умножается на три коэффициента:

  • µ – коэффициент, учитывающий угол наклона ската крыши по отношению к горизонтальной поверхности.
  • c t – термический коэффициент. Зависит от интенсивности выделения тепла через кровлю.
  • c b – ветровой коэффициент, учитывающий снос снега ветром.

Присутствие в формуле коэффициентов определяет зависимость результата от некоторых условий.

Определение коэффициентов

Рассмотрим значения коэффициентов применительно к зданиям с габаритными разменами менее 100 метров и без сложных кровельных форм. Для крупногабаритных зданий или при ломаных рельефах кровли применяются более сложные расчеты.

Зависимость величины снежного давления на квадратный метр от угла наклона ската крыши объясняется тем, что:

  1. На плоских или слабонаклоненных кровлях снег не сползает. Коэффициент µ равен 1,0 при наклоне ската до 25°.
  2. Расположение кровли под углом к горизонтальной поверхности приводит к увеличению площади кровли, на которую выпадает норма снега для горизонтального квадрата. Коэффициент µ равен 0,7 на углах 25° – 60°.
  3. На крутых поверхностях осадки не задерживаются. Коэффициент µ равен 0, если наклон более 60° (нагрузка отсутствует).

Введение в формулу термического коэффициента c t позволяет учесть интенсивность таяния снега от выделения тепла через кровлю. Как правило, кровельный пирог здания проектируют с минимальными потерями тепла в целях экономии, а коэффициент c t при расчетах принимают равным 1,0. Для применения пониженного значения коэффициента 0,8 необходимо, чтобы на здании было неутепленное покрытие с повышенным тепловыделением с наклоном кровли более чем 3° и наличием действенной системы отвода талых вод.

Ветер сносит снег с крыш, снижая давящий на конструкцию вес. Ветровой коэффициент c b можно понизить с 1,0 до 0,85, но только в том случае, если выполняются условия:

  1. Есть постоянные ветра со скоростью от 4 м/с и выше.
  2. Средняя зимняя температура воздуха ниже 5С.
  3. Угол ската кровли от 12° до 20°.

Рассчитанное значение перед применением в проектных решениях умножают на коэффициент надежности γ f = 1,4, обеспечивая компенсацию теряющейся со временем прочности материалов конструкций.

Пример расчета нагрузки

Расчет снеговой нагрузки на кровлю проведем для здания, которое проектируется для строительства в Хабаровске. По карте определяем категорию района – II, по категории узнаем максимальное нормативное значение – до 120 кг/м 2 . Здание проектируется с двускатной крышей под углом 35 ° к поверхности. Значит, коэффициент µ равен 0,7.

Предполагается наличие в здании мансарды и применение эффективных теплоизолирующих материалов кровельного пирога. Коэффициент c t равен 1,0.

Здание будет построено в городе, этажность не превышает окружающие строения, расположенные на расстоянии двух высот здания. Коэффициент c b следует принять равным 1,0.

Таким образом, расчетное значение равно: S 0 = c b c t µ S g =1,0*1,0*0,7*120 =94 кг/м2

Для расчета прочности, и не только конструкции крыши, но и фундамента, несущих элементов строения, применяем коэффициент надежности 1,4, получив для проектных вычислений значение 131,6 кг/м2.

Ветровая нагрузка

Ветровая нагрузка на крышу при боковом давлении воздушного потока несет столкновение с крышей и со стеной здания. Завихрение потока, происходящее у стены, частично уходит к фундаменту, другая часть потока по касательной стены производит удар о свес крыши. Атака ветрового потока огибает касательно конек крыши с захватом спокойных молекул воздуха со стороны подветренной и уходит прочь. Исходя из этого, сил способных сорвать кровлю или опрокинуть ее, возникает сразу три. Одна – сила подъема, которая образуется при разности давления воздуха со стороны подветренной, и две другие силы – касательные со стороны наветренной.

Возникает еще одна сила, способная вдавить склон крыши, действующая перпендикулярно скату. Касательные и нормальные силы могут изменять свое значение в зависимости от угла наклона ската. Понятно, что чем больше величина угла наклона кровли, тем большее влияние принимают силы нормальные и меньше касательные. На крышах пологих принимают большое значение касательные силы, увеличиваясь в своей подъемной силе со стороны подветренной, таким образом, уменьшается нормальная сила со стороны наветренной.

А теперь давайте посмотрим, как происходит расчет нагрузки. Кстати, на карте Украины вам вновь придется переводит Паскали в килограммы, как мы это делали при расчете снеговой нагрузки.

Расчет ветровой нагрузки w, зависящей от высоты z над землей, определяется по такой формуле:  Wр = W?k(z)?c, в которой W – расчетное значение давления ветра, определяемое по карте «Изменениях к СНиП  2.01.07-85»; а коэффициент k учитывает изменения ветрового давления для z, определим по таблице; коэффициент c – учитывает изменения всех направлений давления нормальных сил, в зависимости от расположения ската к наветренной или подветренной сторон.

Аэродинамические коэффициенты со знаком «плюс» определяют направление создаваемого давления ветра на поверхность (давление активное), «минус» — от соответствующей поверхности (отсос). Линейной интерполяцией находятся промежуточные значения нагрузок. При затрудненном использовании таблиц 3, 4 на рисунке про аэродинамические коэффициенты ветровой нагрузки, практикуют выбор наибольшего значения коэффициентов для определенных углов наклона крыш.

Крыши с крутым углом наклона, ветер разрушает опрокидыванием, пологие крыши – срываются. Для избегания разрушения, строители нижние концы стропильных ног прикрепляют скруткой из проволоки к ершу, который вбит в стену. Ерш представляет собой штырь из металла с насечками предотвращающие выдергивание, изготавливают способом ковки. Если неизвестен факт стороны, с которой ожидается сильный ветер, то лучше стропильные ноги прикрутить через одну по периметру всего здания – стороны с умеренным ветром, и каждую ногу – в районе с сильным воздушным давлением. Укрепление стропил можно произвести другим образом – концы проволоки заложить в укладку стен во время строительства. Чтобы не испортить внешний фасад, концы проволоки выпустить внутрь чердачного помещения. Удобна в таком использовании отожженная стальная проволока, с диаметрами начиная от 4 мм и до 8 мм.

Общую устойчивость каркаса крыши обеспечивают подкосами, раскосами и связками по диагонали. Способствует стропильной системе использование устройства обрешетки.

Вот таким образом и происходит расчет ветровой нагрузки на крышу.

Если вы внимательно читали, то должны были понять, что вообще их себя представляют ветровая и снеговая нагрузка для вашего будущего дома. Если отнесетесь не серьезно к этому делу, то может произойти беда. Это еще не все виды нагрузок. Оставшиеся виды описываются в другой статье.

Нормативная снеговая нагрузка в вашей местности

Когда говорят о расчете снеговой нагрузки на крышу, то говорят о том, сколько килограмм снега может приходиться на каждый квадратный метр крыши, пока она реально может держать такой вес до начала деформации конструкции. Говоря простым языком, какой шапке снега можно позволить лежать на крыше каждую зиму без опасения того, что она проломит кровлю или расшатает всю стропильную систему.

Такой расчет делают еще на стадии проектирования дома. Для этого первым делом вам нужно изучить все данные по специальным таблицам и картам СП 20.3330.2011 «Нагрузки и воздействия». Исходя из этого узнайте, будет ли запланированная ваши конструкция надежной.

Например, если согласно расчетам она должна спокойно выдерживать слой снега в 200 килограмм на каждый квадратный метр, тогда нужно будет внимательно следить за тем, чтобы снежная шапка на крыше не была выше одного высоту. Но, если если снег на крыше уже превышает 20-30 см и вы знаете, что скоро пойдет дождь, то его лучше убрать.

Итак, чтобы узнать нормативную снеговую нагрузку в той местности, где вы строите дом, обратитесь к такой карте:

Кроме того, такой же коэффициент не используется для зданий, которые хорошо защищены от ветра другими зданиями или высоким лесом. Уравнение расчета у вас будет выглядеть вот так:

  • для первого предельного состояния, где рассчитывается прочность, примените формулу qр. Сн = q×µ,
  • для второго предельного состояния, где рассчитывается возможный прогиб крыши, применяйте такую формулу qн. Сн = 0,7q×µ.

При этом, как вы уже заметили, для второй группы предельных состояний вес снега следует учитывать с коэффициентом 0,7, т.е. сама формула будет выглядеть вот так: 0,7q.

Стропильная система и обрешетка крыши в разрезе нагрузок

В данном пункте рассмотрена очередная составляющая постоянных нагрузок — вес стропильной системы и обрешетки. И прежде чем приступать к раскрытию вопроса, следует выделить основные элементы стропильной системы крыши:

1) Стропильная нога — важная часть стропильной системы на которой крепится обрешетка. Сечение стропильной ноги зависит того из чего она изготовлена, веса обрешетки и кровельного материала, а так же возможных снеговых и ветровых нагрузок.
2) Коньковый прогон — это формирующий верхнюю часть крыши брус, на который упираются стропильные ноги.
3) Стойка — это опирающиеся на лежни столбики, которые удерживают коньковый прогон.
4) Подкос — диагональный конструкционный элемент, предназначенный для соединения стропил и передачи от них напряжений сжатия.
5) Лежень — горизонтально расположенное бревно (брус), подложенное под основные элементы стропильной системы.
6) Мауэрлат — элемент из бруса (бревна), уложенный сверху в тех частях наружной стены, где происходит опирание стропил.
7) Обрешетка — решетчатая конструкция поверх стропил, усиливающая пространственную структуру крыши и являющаяся основанием для крепления кровельного материала.

Раскрывая вопрос нагрузок от кровли в разрезе стропильной системы особое внимание стоит уделить подбору сечения, шага стропил и обрешетки. С задачей определения оптимальных параметров стропильных ног справится простая в использовании программа «Стропила 1.0.1.»

Поэтому далее более детально будет рассмотрена тема обрешетки крыши.

Чтобы определить требуемый вид и шаг обрешетки, необходимо заранее определиться с видом кровельного покрытия:

  • Обрешетку для металлочерепицы монтируют из брусков 40 (50) × 50 мм или 60 × 60 мм, которые укладываются на определенном расстоянии друг от друга. Обычно шаг обрешетки составляет 35 — 40 см (зависит от длины волны).
  • Для битумной черепицы или рулонного кровельного материала делается сплошной настил из досок, влагостойкой фанеры или влагостойкой ориентированно-стружечной плиты (ОСП, OSB).
  • Под кровли из крупноразмерного асбесто-цементного шифера шаг обрешетки подбирается так, чтобы под каждым листом оказалось как минимум три решетины (обычно шаг обрешетки составляет 60 см).
  • Под волнистые битумные листы (ондулин) шаг обрешетки выбирается в зависимости от уклона: 45 см для уклонов от 1 : 6 до 1 : 4, 60 см для уклонов более 1 : 4, сплошная обрешетка для уклонов менее 1 : 6.
  • Под кровли из малоразмерных штучных элементов (керамическая черепица) шаг обрешетки принимается таким, чтобы каждая черепица ложилась на две решетины.

Рекомендуемая толщина сплошного настила обрешетки: 

Шаг стропил, мм Толщина фанеры, мм Толщина OSB, мм Толщина досок, мм
600 12 12 20
900 18 18 23
1200 21 21 30
1500 27 27 37

Вес деревянной конструкции стропильной системы рассчитывается исходя из выбранного материала и его объема. Для элементов из хвойных пород дерева объемный вес 1 м³ принимается равным 500 — 550 кг ⁄ м³. Объемный вес фанеры или OSB (ОСП) ≈ 600 — 650 кг ⁄ м³.

Что это такое?

В нашей стране в зимнюю пору опасность представляют не только холода и пронизывающие ветры. Серьезный риск может быть связан со снеговой нагрузкой. Так называют фактор, оказывающий прямое воздействие на срок службы и надежность эксплуатации различных построек. Даже если зима сухая, давление от снега на кровлю и несущие конструкции может быть очень значительно; при увлажнении сила давления существенно нарастает.

Снеговая нагрузка позволяет четко рассчитывать:

  • кровлю;

  • стропила;

  • несущие стены;

  • фундамент здания.

Может возникнуть вопрос — что будет, если все же проигнорировать нормативную в СП по регионам или расчетную нагрузку от снежной массы. На первый взгляд, без таких нормативных актов строительство и ремонт зданий проводились веками и даже тысячелетиями. Однако надо учитывать, что именно невозможность точного расчета сильно вредила людям, и глупо отказываться от такого преимущества, которое есть у современных строителей и планировщиков. Рассчитывая несущие конструкции здания, все специалисты исходят из так называемого метода предельных состояний. В разряд этих состояний относят все события, когда кровельные элементы и другие части перестают исполнять свои функции (не могут сопротивляться новым воздействиям либо исчерпывают необходимый запас прочности).

Если он исчерпан, то здание практически немедленно складывается, обрушивается. Но даже если этого не произойдет, то эксплуатировать постройку дальше будет невозможно. Потребуется демонтаж поврежденных или изношенных конструкций. Понадобится строго полная замена всех кровельных материалов, не исключая металлочерепицы и профнастила. Также стоит отметить, что иногда под влиянием воздействующих на крышу сил образуются статические или динамические деформации, которые не разрушают конструкцию, однако, делают ее непригодной для использования.

В норме — и это четко прописывается и в ГОСТ, и в стандартах других стран — снеговая нагрузка рассчитывается по первому состоянию. Это позволяет подойти к проблеме максимально серьезно. Необходимо понимать, что подобная нагрузка на уровне кровли обычно больше, чем у земли. Это связано с доминирующим направлением ветра и уклоном кровли. На отдельных участках снежинки концентрируются в большей степени, чем на иных местах.

Значение снегового воздействия на 1 кв. м. кровельной поверхности составляет по районам (в Паскалях):

  • 1 — 500;

  • 2 — 1000;

  • 3 — 1500;

  • 4 — 2000;

  • 5 — 2500;

  • 6 — 3000;

  • 7 — 3500;

  • 8 — 4500.

Вот несколько примеров городов из каждого района с определенной нагрузкой по снегу:

  • 1-й Астрахань, Благовещенск;
  • 2-й Владивосток, Волгоград, Иркутск;
  • 3-й Великий Новгород, Брянск, Белгород, Владимир, Воронеж, Екатеринбург;
  • 4-й Архангельск, Барнаул, Иваново, Златоуст, Казань, Кемерово
  • 5-й Киров, Магадан, Мурманск, Набережные Челны, Новый Уренгой, Пермь;
  • 6-й вне густонаселенных мест;
  • 7-й Петропавловск-Камчатский;
  • 8-й вне густонаселенных мест.

Географический фактор

Вес снега напрямую зависит от региона. Естественно, что этот показатель больше в северных областях и уменьшен в южных. Но существует особенное место – возле гор либо на высокой части холмов. Да иногда дома строятся и здесь, и владельцам постоянно приходится сталкиваться с проблемой сильного снежного и ветрового воздействия. Это происходит в любых географических точках, поскольку такова специфика высокогорных участков планеты.

На основе строительных норм и правил (СНиП) предлагаются подробные таблицы. Они объясняют допустимый уровень снега на территории различных регионов.

На основе предложенной информации можно с уверенностью рассчитывать необходимую прочность и наклон крыши. Но не стоит отбрасывать особенности материала, использованного для образования покрытия крыши. Дополнительные факторы, приводящие к увеличению скопления снежного покрова на крыше, не менее важны. В совокупности все это может значительно превысить нормативные показатели, предложенные в таблице.

Зачем учитывать давление снега?

Снеговая нагрузка, карта зонального распределения по территории Российской Федерации

Понятно, что на огромной территории Российской Федерации среднестатистическое количество осадков, в виде снега, существенно различается по регионам. По результатам многолетних наблюдений и вычислений, составлена карта территории страны, на которой указаны восемь различных зон по уровню снеговой нагрузки.

Таблица зонального распределения территории РФ по среднему значению снеговой нагрузки

Снеговые районы Российской Федерации I II III IV V VI VII VIII
Расчетный вес снегового покрова Q на 1 м² горизонтальной поверхности земли, кПа (кг/м²) 0,8 (80) 1,2 (120) 1,8 (180) 2,4 (240) 3,2 (320) 4,0 (400) 4,8 (480) 5,6 (560)

Снеговая нагрузка рассчитывается по формуле: S=Sg*m, где:

  • Sg — расчётное значение веса снегового покрова на 1м. кв. горизонтальной поверхности земли, принимаемое по таблице;
  • m – коэффициент перехода от веса снегового покрова земли к снеговой нагрузке на покрытие;
  • расчётное значение веса снегового покрытия Sg принимается в зависимости от снегового района Российской Федерации.

Коэффициент m зависит от угла наклона ската кровли,  при углах наклона ската кровли:

  • меньше 25 градусов m принимают равным 1;
  • от 25 до 60 градусов значение m принимают равным 0,7 (примерно, для каждого уклона свое значение);
  • более 60 градусов значение m, в расчёте полной снеговой нагрузки, не учитывают.

Для простых зданий и построек снеговая нагрузка на плоскую крышу рассчитывается, исходя из прочности и несущей способности самого слабого звена конструкции:

  1. Расчет на излом или предельно допустимый прогиб плоского перекрытия крыши. Для железобетонных балок и каркасных несущих ферм, из которых сегодня очень любят строить всевозможные павильоны или торговые центры, давление от снеговой нагрузки определяют по максимально допустимому прогибу одиночного элемента перекрытия.
  2. Для простых конструкций плоской крыши, в которых относительно короткие и жесткие балки имеют запредельный запас прочности, расчет от снеговой нагрузки выполняют по величине устойчивости и несущей способности стен и вертикальных опор.
  3. В зданиях и постройках, обладающих избыточным запасом прочности, давление на поверхность крыши вследствие снеговой нагрузки берут в расчет для проверки локальной прочности рулонного мягкого покрытия.

На фото: обрушение крыши под тяжестью снега на Гомельщине. Стропильная система не выдержала нагрузки…

К таким местам относятся зоны примыкания к вертикальным стенам, участки, примыкающие к сливным отверстиям, вентиляционным выводам и аэраторам. В этих местах высота снежного покрова может увеличиваться в разы, соответственно, максимальное усилие разрыва, действующее на кровельное полотно, будет значительно выше среднего значения по крыше.

Условия, перечисленные во втором пункте, используются для навесов с плоской крышей, гаражей и хозяйственных зданий, в конструкции которых общий вклад от снеговой нагрузки в общую величину давления на вертикальные опоры или стены составляет не менее 20% от рекомендуемого запаса прочности.

Еще большее значение имеет снеговая нагрузка для каркасных построек на основе ферм, вертикальных стоек и балок перекрытия, изготовленных из металлопроката без использования бетонных отливок. В этом случае расчет выполняется по устойчивости сварных пролетов и всего здания под максимальной величиной снеговой и ветровой нагрузки. Сведения о толщине и мощности снегового покрытия выбираются из данных метеорологических служб за последние пятьдесят лет.

Сбор нагрузок на кровлю и стропила

По этой причине в местах с повышенной снеговой нагрузкой строительство домов производится с углом наклона от 45° до 60°. Но даже при такой крутизне у сложной конфигурации крыши по причине большого количества сложных соединений и примыканий будет неравномерная нагрузка.

● Антиобледенительная система с кабельным обогревом действенно помогает предотвратить образованию наледи и сосулек. Данная система в ручном или автоматическом режиме управления контролирует установленный по всему периметру крыши нагревательный элемент.

● Расчёт конструкции в процессе проектирования идёт в зависимости от воздействия нагрузки. Вес снега в среднем составляет 100 кг/м³, но в мокром состоянии вес снег может достигать и 300 кг/м³. Исходя из толщины снегового слоя, можно достаточно легко рассчитать нагрузку на всю площадь крыши.

• Толщину снежного покрова необходимо измерять на открытом участке, но для увеличения запаса прочности эту величину надо будет умножить на 1,5. Ввиду региональных климатических условий есть карта снеговой нагрузки. Основные правила и требования СНиП построены согласно этой карте.

● Полная снеговая нагрузка на крышу рассчитывается по формуле: S=Sрасч.×μ

S – полная снеговая нагрузка; Sрасч. – расчётное значение веса снега на 1 м² горизонтальной поверхности земли; μ – расчётный коэффициент, учитывающий наклон кровли.

• Карта расчетных снеговых нагрузок в регионах России СНиП оговаривает следующие значения коэффициента μ:

— при уклоне крыши менее, чем 25° его значение равняется единице; — при величине уклона от 25° до 60° он имеет значение 0,7; — если уклон составляет более 60°, то при расчёте нагрузки расчетный коэффициент не учитывается.

Установка снегозадержателей эффективно борется со сползанием снега с карниза крыши. При их установке нет нужды в ручной очистке крыши от снега. Если нормативная снеговая нагрузка на превышает 180 кг/м², то устанавливаются трубчатые конструкции, а при более плотном весе снежного покрова применяются снегозадержатели в несколько рядов.

● Случаи использования снегозадержателей, согласно СНиП:

• При уклоне 5% и более с наружным водостоком снегозадержатели монтируются на расстоянии 0,6-1,0 метра от края кровли.

• При использовнии трубчатых снегозадержателей под ними должна быть сплошная обрешётка крыши.

• Кроме этого, СНиП описывает основные конструкции и геометрические размеры снегозадержателей, а также места их установки и принцип действия.

• Плоские типы крыши, особенно в частном домостроении, в регионах со значительной снеговой нагрузкой практически не используются. На плоской крыше накапливается очень большое количество снега и при расчёте нагрузки необходимо обеспечить серьёзный запас прочности несущей конструкции. На горизонтальной поверхности крыши организация водосточной системы должна предусматривать уклон в сторону водосточной воронки не менее 2º и наличие системы подогрева кровли.

• Расчёт основных нагрузок позволит наиболее оптимально решить вопрос выбора конструкции стропильной системы и обеспечит долгий срок службы кровельного покрытия с сохранением надёжности и безопасности. При использовании результатов расчётов и исходя из значений нагрузки можно будет легче определиться с выбором типа крыши и кровельного материала с необходимыми характеристиками.

Использование материалов сайта при условии обязательной гиперссылки на данный ресурс.

Расчет в Excel снеговой нагрузки по СП 20.13330.2011.

При отсутствии на вашем компьютере программы MS Excel, можно воспользоваться  свободно распространяемой очень мощной альтернативой — программой OOo Calc из пакета Open Office.

Перед началом работы найдите в Интернете и скачайте СП 20.13330.2011 со всеми приложениями.

Включаем компьютер и начинаем расчет в Excel снеговой нагрузки на покрытия.

В ячейки со светло-бирюзовой заливкой запишем исходные данные, выбранные по СП 20.13330.2011. В ячейках со светло-желтой заливкой считаем результаты. В ячейках с бледно-зеленой заливкой разместим исходные данные, мало подверженные изменениям.

В примечаниях ко всем ячейкам столбца Cпоместим формулы и ссылки на пункты СП 20.13330.2011!!!

1. Открываем Приложение Ж в СП 20.13330.2011 и по карте «Районирование территории Российской Федерации по весу снегового покрова» определяем для местности, где построено (или будет построено) здание номер снегового района. Например, для Москвы, Санкт-Петербурга и Омска – это III снеговой район. Выбираем соответствующую строку с записью III в поле с выпадающим списком, расположенном поверх

ячейки D2: =ИНДЕКС(G4:G11;G2)=III

Подробно о том, как работает функция ИНДЕКС совместно с полем со списком можно прочитать здесь.

2. Считываем массу снегового покрова на 1 м2 горизонтальной поверхности землиSg в кг/м2 для выбранного района

в ячейке D3: =ИНДЕКС(H4:H11;G2)=183

3. Принимаем в соответствии с п. 10.5-10.9 СП 20.13330.2011 значение коэффициента, учитывающего снос снега с покрытий зданий ветром  Ce

в ячейке D4: 1,0

Если не понимаете, как назначать Ce — пишите 1,0.

4. Назначаем в соответствии с п. 10.10 СП 20.13330.2011 значение термического коэффициента Ct

в ячейке D5: 1,0

Если не понимаете, как назначать Ct — пишите 1,0.

5. Назначаем в соответствии с п. 10.4 по Приложению Г СП 20.13330.2011 значение коэффициента перехода от веса снегового покрова земли к снеговой нагрузке на покрытии μ

в ячейке D6: 1,0

Вспоминаем «аксиомы» из предыдущего раздела статьи. Не помните и ничего не понимаете — пишите 1,0.

6. Считываем нормативное значение снеговой нагрузки на горизонтальную проекцию покрытия S в кг/м2, рассчитанное

в ячейке D7: =0,7*D3*D4*D5*D6=128

S0=0.7*Ce*Ct*μ*Sg

7. Записываем в соответствии с п. 10.12 СП 20.13330.2011 значение коэффициента надежности по снеговой нагрузке  γf

в ячейке D8: 1,4

8. И, наконец считываем расчетное значение снеговой нагрузки на горизонтальную проекцию покрытия S в кг/м2, рассчитанное

в ячейке D9: =D7*D8=180

S=γf *S

Таким образом, для «простых» зданий третьего снегового района при μ=1 расчетная снеговая нагрузка равна 180 кг/м2. Этому соответствует высота снежного покрова 0,90…0,45 м при плотности снега 200…400 кг/м3 соответственно. Выводы делать каждому из нас!

Прошу УВАЖАЮЩИХ труд автора скачать файл ПОСЛЕ ПОДПИСКИ на анонсы статей.

ОСТАЛЬНЫМ можно скачать просто так… — никаких паролей нет!

Ссылка на скачивание файла: snegovaia-nagruzka (xls 1,05MB).

Жду ваши комментарии, уважаемые читатели!!! Профессионалов – строителей прошу «бить не сильно». Статья написана не для специалистов, а для широкой аудитории.

Другие статьи автора блога

На главную

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector