Свойства утеплителей и таблица теплопроводности строительных материалов
Содержание:
- Конвекция в жидкостях и газах
- Коэффициент теплопроводности материалов.
- От чего зависит показатель теплопроводности
- Микроскопическая характеристика проводимости
- К чему стремиться?
- Необходимость расчетов
- Закон теплопроводности Фурье
- Понятие теплопроводности на практике
- Коэффициент теплопроводности.
- Таблица теплопроводности материалов на Пли-
- Конвекция в атмосфере
- Факторы, влияющие на скорость передачи тепла
- Если задумано индивидуальное строительство
- Обобщения закона Фурье
- «Виды теплопередачи: теплопроводность, конвекция, излучение»
Конвекция в жидкостях и газах
Передача тепла в текучих средах осуществляется за счет процесса конвекции. Этот процесс предполагает перемещение молекул вещества между зонами с различной температурой, то есть при конвекции происходит перемешивание жидкости или газа. Когда текучая материя отдает тепло, ее молекулы теряют часть кинетической энергии, и материя становится более плотной. Наоборот, когда текучая материя нагревается, ее молекулы увеличивают свою кинетическую энергию, их движение становится более интенсивным, соответственно, объем материи увеличивается, а плотность уменьшается. Именно поэтому холодные слои материи стремятся опуститься вниз под действием силы тяжести, а горячие слои пытаются подняться вверх. Этот процесс приводит к перемешиванию материи, способствуя передачи тепла между ее слоями.
Коэффициент теплопроводности материалов.
Ниже в таблице приведены значения коэффициента теплопроводности для некоторых материалов применяемых в строительстве.
Материал | Коэфф. тепл. Вт/(м2*К) |
Алебастровые плиты | 0,470 |
Алюминий | 230,0 |
Асбест (шифер) | 0,350 |
Асбест волокнистый | 0,150 |
Асбестоцемент | 1,760 |
Асбоцементные плиты | 0,350 |
Асфальт | 0,720 |
Асфальт в полах | 0,800 |
Бакелит | 0,230 |
Бетон на каменном щебне | 1,300 |
Бетон на песке | 0,700 |
Бетон пористый | 1,400 |
Бетон сплошной | 1,750 |
Бетон термоизоляционный | 0,180 |
Битум | 0,470 |
Бумага | 0,140 |
Вата минеральная легкая | 0,045 |
Вата минеральная тяжелая | 0,055 |
Вата хлопковая | 0,055 |
Вермикулитовые листы | 0,100 |
Войлок шерстяной | 0,045 |
Гипс строительный | 0,350 |
Глинозем | 2,330 |
Гравий (наполнитель) | 0,930 |
Гранит, базальт | 3,500 |
Грунт 10% воды | 1,750 |
Грунт 20% воды | 2,100 |
Грунт песчаный | 1,160 |
Грунт сухой | 0,400 |
Грунт утрамбованный | 1,050 |
Гудрон | 0,300 |
Древесина — доски | 0,150 |
Древесина — фанера | 0,150 |
Древесина твердых пород | 0,200 |
Древесно-стружечная плита ДСП | 0,200 |
Дюралюминий | 160,0 |
Железобетон | 1,700 |
Зола древесная | 0,150 |
Известняк | 1,700 |
Известь-песок раствор | 0,870 |
Ипорка (вспененная смола) | 0,038 |
Камень | 1,400 |
Картон строительный многослойный | 0,130 |
Каучук вспененный | 0,030 |
Каучук натуральный | 0,042 |
Каучук фторированный | 0,055 |
Керамзитобетон | 0,200 |
Кирпич кремнеземный | 0,150 |
Кирпич пустотелый | 0,440 |
Кирпич силикатный | 0,810 |
Кирпич сплошной | 0,670 |
Кирпич шлаковый | 0,580 |
Кремнезистые плиты | 0,070 |
Латунь | 110,0 |
Лед 0°С | 2,210 |
Лед -20°С | 2,440 |
Липа, береза, клен, дуб (15% влажности) | 0,150 |
Медь | 380,0 |
Мипора | 0,085 |
Опилки — засыпка | 0,095 |
Опилки древесные сухие | 0,065 |
ПВХ | 0,190 |
Пенобетон | 0,300 |
Пенопласт ПС-1 | 0,037 |
Пенопласт ПС-4 | 0,040 |
Пенопласт ПХВ-1 | 0,050 |
Пенопласт резопен ФРП | 0,045 |
Пенополистирол ПС-Б | 0,040 |
Пенополистирол ПС-БС | 0,040 |
Пенополиуретановые листы | 0,035 |
Пенополиуретановые панели | 0,025 |
Пеностекло легкое | 0,060 |
Пеностекло тяжелое | 0,080 |
Пергамин | 0,170 |
Перлит | 0,050 |
Перлито-цементные плиты | 0,080 |
Песок 0% влажности | 0,330 |
Песок 10% влажности | 0,970 |
Песок 20% влажности | 1,330 |
Песчаник обожженный | 1,500 |
Плитка облицовочная | 1,050 |
Плитка термоизоляционная ПМТБ-2 | 0,036 |
Полистирол | 0,082 |
Поролон | 0,040 |
Портландцемент раствор | 0,470 |
Пробковая плита | 0,043 |
Пробковые листы легкие | 0,035 |
Пробковые листы тяжелые | 0,050 |
Резина | 0,150 |
Рубероид | 0,170 |
Сланец | 2,100 |
Снег | 1,500 |
Сосна обыкновенная, ель, пихта (450…550 кг/куб.м, 15% влажности) | 0,150 |
Сосна смолистая (600…750 кг/куб.м, 15% влажности) | 0,230 |
Сталь | 52,0 |
Стекло | 1,150 |
Стекловата | 0,050 |
Стекловолокно | 0,036 |
Стеклотекстолит | 0,300 |
Стружки — набивка | 0,120 |
Тефлон | 0,250 |
Толь бумажный | 0,230 |
Цементные плиты | 1,920 |
Цемент-песок раствор | 1,200 |
Чугун | 56,0 |
Шлак гранулированный | 0,150 |
Шлак котельный | 0,290 |
Шлакобетон | 0,600 |
Штукатурка сухая | 0,210 |
Штукатурка цементная | 0,900 |
Эбонит | 0,160 |
От чего зависит показатель теплопроводности
Рассматривая теплопроводность металлов и сплавов (таблица создана не только для металлов, но и других материалов), следует учитывать, что наиболее важным показателем является коэффициент теплопроводности. Он зависит от нижеприведенных моментов:
- Типа материала и его химического состава. Теплопроводность железа будет существенно отличаться от соответствующего показателя алюминия, что связано с особенностями кристаллической решетки материалов и их другими свойствами.
- Коэффициент может изменяться при нагреве или охлаждения металла. При этом изменения могут быть существенными, так как у каждого материала есть своя точка плавления, когда молекулы начинают перестраиваться.
В таблицах для некоторых металлов и сплавов коэффициент теплопроводности указывается уже в жидкой фазе.
Сегодня на практике практически не проводят измерение рассматриваемого показателя. Это связано с тем, что коэффициент теплопроводности при несущественном изменении химического состава остается практически неизменным. Табличные данные применяются при проектировании и выполнении других расчетов.
Микроскопическая характеристика проводимости
Здесь теплопроводность осуществляется в стремительно перемещающихся или вибрирующих атомах. Молекулы контактируют с соседними частичками и переносят часть их кинетической энергии. Тепло передается через проводимость, когда атомы настраивают вибрацию друг против друга. В твердых телах проводимость выступает основным способом теплообмена.
У жидкостей или газов заметна низкая теплопроводность, чем у твердых объектов. Все дело в больших дистанциях между атомами (меньше сталкиваются – ниже проводимость).
Молекулы в двух объектах при различных температурных показателях обладают разными средними кинетическими энергиями. Удары при контакте передают энергию из участков с большей температурой в меньшие. На снимке видно, что молекула в районе низкой температуры (справа) обладает более низкой энергией перед ударом, но после она возрастает. А вот молекула из более высокого температурного участка (слева) наделена противоположными характеристиками и результатом
Кинетическая энергия в горячем теле выше, чем более прохладном. При ударе двух молекул энергия перейдет от горячей к холодной. Кумулятивный эффект вызывает чистый поток тепла. Поэтому тепловой поток основывается на разности температур: T = Tгорячая – Tхолодный.
Число столкновений увеличивается с площадью, поэтому теплопроводность зависит от площади поперечного сечения.
К чему стремиться?
Вслед за странами Европы, в Российской Федерации и у нас в Беларуси приняли новые нормы теплосопротивления ограждающих и несущих конструкций, направленные на снижение эксплуатационных расходов и энергосбережение.
С выходом СНиП II-3-79*, СНиП 23-02-2003 «Тепловая защита зданий» прежние нормы теплосопротивления устарели. Новыми нормами предусмотрено резкое возрастание требуемого сопротивления теплопередаче ограждающих конструкций. В российском СНиПе есть таблица «Нормируемые значения сопротивления теплопередаче ограждающих конструкций» (слева картинка). Как и следовало ожидать, нормы по теплосопротивлению зависят от окружающей температуры и длительности отопительного периода. Эта зависимость описывается таким понятием, как «Градусо-сутки отопительного периода» или ГСОП, это условная единица измерения повышения среднесуточной температуры над заданным минимумом (базовой температурой). Показатель, равный произведению разности температуры внутреннего воздуха и средней температуры наружного воздуха за отопительный период на продолжительность отопительного периода.
ГСОП=(tv-t8)·z8, где
tv — расчётная температура внутреннего воздуха в зимний период (по ГОСТу равна 20°С),
t8 — средняя температура периода со средней суточной температурой воздуха ниже или равной 8°С,
z8 — продолжительность (в сутках) периода со средней суточной температурой воздуха ниже или равной 8°С.
Данные t8 и z8, а так же массу других интересных данных можно взять из таблиц СНиП 23-01-99 «Строительная климатология». В документе есть данные не только по России, но и по Беларуси, Грузии, Казахстану, Кыргызии, Молдове, Туркменистану, Узбекистану и Украине.
Не смотря на всеобщий охват нормативной базы данных в российских документах, белорусские документы всё-же отличаются (ТКП 45-2.04-43-2006 Строительная теплотехника. Строительные нормы проектирования.)
Что же предписывает нам этот ТКП?
В связи с небольшой географической протяжённостью нашей страны требования к коэффициенту сопротивления теплопередаче у нас выражаются безо всяких формул, ГСОПов и прочих расчётов одной цифрой для всех регионов! Сопротивление теплопередаче наружных ограждающих конструкций R при строительстве жилых зданий, за исключением наружных дверей, ворот и ограждающих конструкций помещений с избытками явной теплоты, следует принимать не менее:
-
Наружные стены зданий — 3,2;
-
Совмещённые покрытия, чердачные перекрытия и перекрытия над проездами — 6,0;
-
Перекрытия над неотапливаемыми подвалами и техническими подпольями — 2,5;
-
Заполнение световых проёмов для всех типов зданий — 1,0.
Итак, мы видим, что наши отечественные требования всё-же более высокие, чем у наших соседей россиян, при том, что климат нашей страны в целом теплее.
Вот к этим характеристикам и нужно стремиться, чтобы соответствовать современным стандартам!
Интереса ради мне попалась таблица, отражающая нормы ряда европейских стран по показателю R.
Необходимость расчетов
Для чего же необходимо проводить эти вычисления, есть ли от них хоть какая-то польза на практике? Разберемся подробнее.
Оценка эффективности термоизоляции
В разных климатических регионах России разный температурный режим, поэтому для каждого из них рассчитаны свои нормативные показатели сопротивления теплопередаче. Проводятся эти расчеты для всех элементов строения, контактирующих с внешней средой. Если сопротивление конструкции находится в пределах нормы, то за утепление можно не беспокоиться.
В случае, если термоизоляция конструкции не предусмотрена, то нужно сделать правильный выбор утеплительного материала с подходящими теплотехническими характеристиками.
Тепловые потери
Тепловые потери дома
Не менее важная задача – прогнозирование тепловых потерь, без которого невозможно правильно спланировать систему отопления и создать идеальную термоизоляцию. Такие вычисления могут понадобиться при выборе оптимальной модели котла, количества необходимых радиаторов и правильной их расстановки.
Для определения тепловых потерь через любую конструкцию нужно знать сопротивление, которое вычисляется с помощью разницы температур и количества теряемого тепла, уходящего с одного квадратного метра ограждающей конструкции. И так, если мы знаем площадь конструкции и ее термическое сопротивление, а также знаем для каких климатических условий производится расчет, то можем точно определить тепловые потери. Есть хороший калькулятор расчета теплопотерь дома ( он может даже посчитать сколько будет уходить денег на отопление, примерно конечно).
Такие расчеты в здании проводятся для всех ограждающих конструкций, взаимодействующих с холодными потоками воздуха, а затем суммируются для определения общей потери тепла. На основании полученной величины проектируется система отопления, которая должна полностью компенсировать эти потери. Если же потери тепла получаются слишком большими, они влекут за собой дополнительные финансовые затраты, а это не всем «по карману». При таком раскладе нужно задуматься об улучшении системы термоизоляции.
Отдельно нужно поговорить про окна, для них сопротивление теплопередаче определяются нормативными документами. Самостоятельно проводить расчеты не нужно. Существуют уже готовые таблицы, в которых внесены значения сопротивления для всех типов конструкций окон и балконных дверей.Тепловые потери окон рассчитываются исходя из площади, а также разницы температур по разные стороны конструкции.
Расчеты, приведенные выше, подходят для новичков, которые делают первые шаги в проектировании энергоэффективных домов. Если же за дело берется профессионал, то его расчеты более сложные, так как дополнительно учитывается множество поправочных коэффициентов – на инсоляцию, светопоглощение, отражение солнечного света, неоднородность конструкций и другие.
Закон теплопроводности Фурье
В установившемся режиме плотность потока энергии, передающейся посредством теплопроводности, пропорциональна градиенту температуры:
- q→=−ϰgrad(T),{\displaystyle {\vec {q}}=-\varkappa \,\mathrm {grad} (T),}
где q→{\displaystyle {\vec {q}}} — вектор плотности теплового потока — количество энергии, проходящей в единицу времени через единицу площади, перпендикулярной каждой оси, ϰ{\displaystyle \varkappa } — коэффициент теплопроводности (удельная теплопроводность), T{\displaystyle T} — температура. Минус в правой части показывает, что тепловой поток направлен противоположно вектору grad(T){\displaystyle \mathrm {grad} (T)} (то есть в сторону скорейшего убывания температуры). Это выражение известно как закон теплопроводности Фурье.
В интегральной форме это же выражение запишется так (если речь идёт о стационарном потоке тепла от одной грани параллелепипеда к другой):
- P=−ϰSΔTl,{\displaystyle P=-\varkappa {\frac {S\Delta T}{l}},} [Вт/(м·К) · (м2·К)/м = Вт/(м·К) · (м·К) = Вт]
где P{\displaystyle P} — полная мощность тепловых потерь, S{\displaystyle S} — площадь сечения параллелепипеда, ΔT{\displaystyle \Delta T} — перепад температур граней, l{\displaystyle l} — длина параллелепипеда, то есть расстояние между гранями.
Связь с электропроводностью
Связь коэффициента теплопроводности ϰ{\displaystyle \varkappa } с удельной электрической проводимостью σ{\displaystyle \sigma } в металлах устанавливает закон Видемана — Франца:
- ϰσ=π23(ke)2T,{\displaystyle {\frac {\varkappa }{\sigma }}={\frac {\pi ^{2}}{3}}\left({\frac {k}{e}}\right)^{2}T,}
- где k{\displaystyle k} — постоянная Больцмана;
- e{\displaystyle e} — заряд электрона;
- T{\displaystyle T} — абсолютная температура.
Коэффициент теплопроводности газов
В газах коэффициент теплопроводности может быть найден по приближённой формуле
- ϰ∼13ρcvλv¯,{\displaystyle \varkappa \sim {\frac {1}{3}}\rho c_{v}\lambda {\bar {v}},}
где ρ{\displaystyle \rho } — плотность газа, cv{\displaystyle c_{v}} — удельная теплоёмкость при постоянном объёме, λ{\displaystyle \lambda } — средняя длина свободного пробега молекул газа, v¯{\displaystyle {\bar {v}}} — средняя тепловая скорость. Эта же формула может быть записана как
- ϰ=ik3π32d2RTμ,{\displaystyle \varkappa ={\frac {ik}{3\pi ^{3/2}d^{2}}}{\sqrt {\frac {RT}{\mu }}},}
где i{\displaystyle i} — сумма поступательных и вращательных степеней свободы молекул (для двухатомного газа i=5{\displaystyle i=5}, для одноатомного i=3{\displaystyle i=3}), k{\displaystyle k} — постоянная Больцмана, μ{\displaystyle \mu } — молярная масса, T{\displaystyle T} — абсолютная температура, d{\displaystyle d} — эффективный (газокинетический) диаметр молекул, R{\displaystyle R} — универсальная газовая постоянная. Из формулы видно, что наименьшей теплопроводностью обладают тяжелые одноатомные (инертные) газы, наибольшей — легкие многоатомные (что подтверждается практикой, максимальная теплопроводность из всех газов — у водорода, минимальная — у радона, из нерадиоактивных газов — у ксенона).
Теплопроводность в сильно разреженных газах
Приведённое выше выражение для коэффициента теплопроводности в газах не зависит от давления. Однако если газ сильно разрежен, то длина свободного пробега определяется не столкновениями молекул друг с другом, а их столкновениями со стенками сосуда. Состояние газа, при котором длина свободного пробега молекул ограничивается размерами сосуда называют высоким вакуумом. При высоком вакууме теплопроводность убывает пропорционально плотности вещества (то есть пропорциональна давлению в системе): ϰ∼13ρcvlv¯∝P{\displaystyle \varkappa \sim {\frac {1}{3}}\rho c_{v}l{\bar {v}}\propto P}, где l{\displaystyle l} — размер сосуда, P{\displaystyle P} — давление.
Таким образом коэффициент теплопроводности вакуума тем ближе к нулю, чем глубже вакуум. Это связано с низкой концентрацией в вакууме материальных частиц, способных переносить тепло. Тем не менее, энергия в вакууме передаётся с помощью излучения. Поэтому, например, для уменьшения теплопотерь стенки термоса делают двойными, серебрят (такая поверхность лучше отражает излучение), а воздух между ними откачивают.
Понятие теплопроводности на практике
Теплопроводность учитывается на этапе проектирования здания
При этом берется во внимание способность материалов удерживать тепло. Благодаря их правильному подбору жильцам внутри помещения всегда будет комфортно
Во время эксплуатации будут существенно экономиться денежные средства на отопление.
Утепление на стадии проектирования является оптимальным, но не единственным решением. Не составляет трудности утеплить уже готовое здание путем проведения внутренних или наружных работ. Толщина слоя изоляции будет зависеть от выбранных материалов. Отдельные из них (к примеру, дерево, пенобетон) могут в некоторых случаях использоваться без дополнительного слоя термоизоляции. Главное, чтобы их толщина превышала 50 сантиметров.
Особенное внимание следует уделить утеплению кровли, оконных и дверных проемов, пола. Сквозь эти элементы уходит больше всего тепла
Зрительно это можно увидеть на фотографии в начале статьи.
Коэффициент теплопроводности.
Количество тепла, которое проходит через стены (а по научному — интенсивность теплопередачи за счет теплопроводности) зависит от разности температур (в доме и на улице), от площади стен и теплопроводности материала, из которого сделаны эти стены.
Для количественной оценки теплопроводности существует коэффициент теплопроводности материалов. Этот коэффициент отражает свойство вещества проводить тепловую энергию. Чем больше значение коэффициента теплопроводности материала, тем лучше он проводит тепло. Если мы собираемся утеплять дом, то надо выбирать материалы с небольшим значением этого коэффициента. Чем он меньше, тем лучше. Сейчас в качестве материалов для утепления зданий наибольшее распространение получили утеплители из минеральной ваты, и различных пенопластов. Набирает популярность новый материал с улучшенными теплоизоляционными качествами — Неопор.
Коэффициент теплопроводности материалов обозначается буквой ? (греческая строчная буква лямбда) и выражается в Вт/(м2*К). Это означает, что если взять стену из кирпича, с коэффициентом теплопроводности 0,67 Вт/(м2*К), толщиной 1 метр и площадью 1 м2., то при разнице температур в 1 градус, через стену будет проходить 0,67 ватта тепловой энергии. Если разница температур будет 10 градусов, то будет проходить уже 6,7 ватта. А если при такой разнице температур стену сделать 10 см, то потери тепла будут уже 67 ватт. Подробней о методике расчета теплопотерь зданий можно посмотреть здесь.
Следует отметить, что значения коэффициента теплопроводности материалов указываются для толщины материала в 1 метр. Чтобы определить теплопроводность материала для любой другой толщины, надо коэффициент теплопроводности разделить на нужную толщину, выраженную в метрах.
В строительных нормах и расчетах часто используется понятие «тепловое сопротивление материала». Это величина обратная теплопроводности. Если, на пример, теплопроводность пенопласта толщиной 10 см — 0,37 Вт/(м2*К), то его тепловое сопротивление будет равно 1 / 0,37 Вт/(м2*К) = 2,7 (м2*К)/Вт.
Таблица теплопроводности материалов на Пли-
Материал | Плотность, кг/м3 |
Теплопроводность, Вт/(м·град) |
Теплоемкость, Дж/(кг·град) |
Плита бумажная прессованая | 600 | 0.07 | — |
Плита пробковая | 80…500 | 0.043…0.055 | 1850 |
Плитка облицовочная, кафельная | 2000 | 1.05 | — |
Плитка термоизоляционная ПМТБ-2 | — | 0.04 | — |
Плиты алебастровые | — | 0.47 | 750 |
Плиты из гипса ГОСТ 6428 | 1000…1200 | 0.23…0.35 | 840 |
Плиты древесно-волокнистые и древесно-стружечные (ГОСТ 4598-74, ГОСТ 10632-77) | 200…1000 | 0.06…0.15 | 2300 |
Плиты из керзмзито-бетона | 400…600 | 0.23 | — |
Плиты из полистирол-бетона ГОСТ Р 51263-99 | 200…300 | 0.082 | — |
Плиты из резольноформальдегидного пенопласта (ГОСТ 20916-75) | 40…100 | 0.038…0.047 | 1680 |
Плиты из стеклянного штапельного волокна на синтетическом связующем (ГОСТ 10499-78) | 50 | 0.056 | 840 |
Плиты из ячеистого бетона ГОСТ 5742-76 | 350…400 | 0.093…0.104 | — |
Плиты камышитовые | 200…300 | 0.06…0.07 | 2300 |
Плиты кремнезистые | 0.07 | — | |
Плиты льнокостричные изоляционные | 250 | 0.054 | 2300 |
Плиты минераловатные на битумной связке марки 200 ГОСТ 10140-80 | 150…200 | 0.058 | — |
Плиты минераловатные на синтетическом связующем марки 200 ГОСТ 9573-96 | 225 | 0.054 | — |
Плиты минераловатные на синтетической связке фирмы «Партек» (Финляндия) | 170…230 | 0.042…0.044 | — |
Плиты минераловатные повышенной жесткости ГОСТ 22950-95 | 200 | 0.052 | 840 |
Плиты минераловатные повышенной жесткости на органофосфатном связующем (ТУ 21-РСФСР-3-72-76) |
200 | 0.064 | 840 |
Плиты минераловатные полужесткие на крахмальном связующем | 125…200 | 0.056…0.07 | 840 |
Плиты минераловатные на синтетическом и битумном связующих | — | 0.048…0.091 | — |
Плиты мягкие, полужесткие и жесткие минераловатные на синтетическом и битумном связующих (ГОСТ 9573-82, ГОСТ 10140-80, ГОСТ 12394-66) |
50…350 | 0.048…0.091 | 840 |
Плиты пенопластовые на основе резольных фенолформальдегидных смол ГОСТ 20916-87 | 80…100 | 0.045 | — |
Плиты пенополистирольные ГОСТ 15588-86 безпрессовые | 30…35 | 0.038 | — |
Плиты пенополистирольные (экструзионные) ТУ 2244-001-47547616-00 | 32 | 0.029 | — |
Плиты перлито-битумные ГОСТ 16136-80 | 300 | 0.087 | — |
Плиты перлито-волокнистые | 150 | 0.05 | — |
Плиты перлито-фосфогелевые ГОСТ 21500-76 | 250 | 0.076 | — |
Плиты перлито-1 Пластбетонные ТУ 480-1-145-74 | 150 | 0.044 | — |
Плиты перлитоцементные | — | 0.08 | — |
Плиты строительный из пористого бетона | 500…800 | 0.22…0.29 | — |
Плиты термобитумные теплоизоляционные | 200…300 | 0.065…0.075 | — |
Плиты торфяные теплоизоляционные (ГОСТ 4861-74) | 200…300 | 0.052…0.064 | 2300 |
Плиты фибролитовые (ГОСТ 8928-81) и арболит (ГОСТ 19222-84) на портландцементе | 300…800 | 0.07…0.16 | 2300 |
Конвекция в атмосфере
Важность атмосферной конвекции велика, поскольку благодаря ней существуют такие явления, как ветры, циклоны, образование облаков, дожди и другие. Все эти процессы подчиняются физическим законам термодинамики
Среди процессов конвекции в атмосфере самым важным является круговорот воды. Здесь следует рассмотреть вопросы о том, что такое теплопроводность и теплоемкость воды. Под теплоемкостью воды понимается физическая величина, показывающая, какое количество теплоты необходимо передать 1 кг воды, чтобы ее температура увеличилась на один градус. Оно равно 4220 Дж.
Смотреть галерею
Круговорот воды осуществляется следующим образом: солнце нагревает воды Мирового океана, и часть воды испаряется в атмосферу. За счет процесса конвекции водяной пар поднимается на большую высоту, охлаждается, образуются облака и тучи, которые приводят к возникновению осадков в виде града или дождя.
Факторы, влияющие на скорость передачи тепла
Кроме температуры и площади поперечного сечения стоит также вспомнить о толщине материала, через который транспортируется тепло. Чтобы оно перешло слева направо, нужно задействовать молекулярные столкновения. Чем толще материал, тем больше времени требует для передачи.
Теплопроводность проходит через материал, отображенный здесь прямоугольным стержнем. Температура: T2 (слева) и T1 (справа), где T2 больше T1. Скорость теплопередачи выступает прямо пропорциональной площади поверхности A, отличию температур T2-T1 и проводимости вещества k. Скорость обратно пропорциональна толщине d
Скорость теплопередачи зависит от свойств материала, описываемых коэффициентом теплопроводности. Добавляем все факторы и получим формулу:
(Q/t – скорость передачи тепла в джоулях в секунду, k – теплопроводность материала, A и d – площадь поверхности и толщина, а (T2-T1) – разность температур).
Введение |
|
Удельная теплоемкость |
|
Изменение фазы и скрытая теплота | |
Методы переноса тепла |
|
Глобальное потепление | |
Фазовое равновесие |
|
Если задумано индивидуальное строительство
При возведении дома важно учитывать технические характеристики всех составляющих (материала для стен, кладочного раствора, будущего утепления, гидроизоляционных и пароотводящих плёнок, финишной отделки). Для понимания, какие стены наилучшим образом будут сохранять тепло, нужно проанализировать коэффициент теплопроводности не только материала для стен, но и строительного раствора, что видно из таблицы ниже:
Для понимания, какие стены наилучшим образом будут сохранять тепло, нужно проанализировать коэффициент теплопроводности не только материала для стен, но и строительного раствора, что видно из таблицы ниже:
Номер п/п |
Материал для стен, строительный раствор |
Коэффициент теплопроводности по СНиП |
1. | Кирпич | 0,35 – 0,87 |
2. | Саманные блоки | 0,1 – 0,44 |
3. | Бетон | 1,51 – 1,86 |
4. | Пенобетон и газобетон на основе цемента | 0,11 – 0,43 |
5. | Пенобетон и газобетон на основе извести | 0,13 – 0,55 |
6. | Ячеистый бетон | 0,08 – 0,26 |
7. | Керамические блоки | 0,14 – 0,18 |
8. | Строительный раствор цементно-песчаный | 0,58 – 0,93 |
9. | Строительный раствор с добавлением извести | 0,47 – 0,81 |
Важно. Из приведённых в таблице данных видно, что у каждого строительного материала довольно большой разброс в показателях коэффициента теплопроводности.. Это связано с несколькими причинами:
Это связано с несколькими причинами:
- Плотность. Все утеплители выпускаются или укладываются (пеноизол, эковата) различной плотности. Чем ниже плотность (больше присутствует воздуха в теплоизоляционной структуре), тем ниже проводимость тепла. И, наоборот, у очень плотных утеплителей этот коэффициент выше.
- Вещество, из которого производят (основа). Например, кирпич бывает силикатным, керамическим, глиняным. От этого зависит и коэффициент теплопроводности.
- Количество пустот. Это касается кирпича (пустотелый и полнотелый) и теплоизоляции. Воздух – самый худший проводник тепла. Коэффициент его теплопроводимости – 0,026. Чем больше пустот, тем ниже этот показатель.
Строительный раствор хорошо проводит тепло, поэтому любые стены рекомендуется утеплять.
Обобщения закона Фурье
Следует отметить, что закон Фурье не учитывает инерционность процесса теплопроводности, то есть в данной модели изменение температуры в какой-то точке мгновенно распространяется на всё тело. Закон Фурье неприменим для описания высокочастотных процессов (и, соответственно, процессов, чьё разложение в ряд Фурье имеет значительные высокочастотные гармоники). Примерами таких процессов являются распространение ультразвука, ударные волны и т. п. Инерционность в уравнения переноса первым ввел Максвелл, а в 1948 году Каттанео был предложен вариант закона Фурье с релаксационным членом:
\tau\frac{\partial\mathbf{q}}{\partial t}=-\left(\mathbf{q}+\varkappa\,\nabla T\right).
Если время релаксации \tau пренебрежимо мало, то это уравнение переходит в закон Фурье.
«Виды теплопередачи: теплопроводность, конвекция, излучение»
Теплопередача – это способ изменения внутренней энергии тела при передаче энергии от одной части тела к другой или от одного тела к другому без совершения работы. Существуют следующие виды теплопередачи: теплопроводность, конвекция и излучение.
Теплопроводность
Теплопроводность – это процесс передачи энергии от одного тел а к другому или от одной части тела к дpугой благодаря тепловому движению частиц
Важно, что при теплопроводности не происходит перемещения вещества, от одного тела к другом у или от одной части телa к другой передается энергия
Разные вещества обладают разной теплопроводностью. Если на дно пробирки, наполненной водой, положить кусочек льда и верхний её конец поместить над пламенем спиртовки, то через некоторое время вода в верхней части пробирки закипит, а лёд при этом не растает. Следовательно, вода, так же как и все жидкости, обладает плохой теплопроводностью.
Ещё более плохой теплопроводность ю обладают газы. Возьмём пробирку, в которой нет ничего, кроме воздуха, и расположим её над пламенем спиртовки. Палец, помещённый в пробирку, не почувствует тепла. Следовательно, воздух и другие газы обладает плохой теплопроводностью.
Хорошими проводниками теплоты являются металлы, самыми плохими — сильно разреженные газы. Это объясняется особенностями их строения. Молекулы газов находятся друг от друга на расстояниях, больших, чем молекулы твёрдых тел, и значительно реже сталкиваются. Поэтому и передача энергии от одних молекул к другим в газах происходит не столь интенсивно, как в твёрдых телах. Теплопроводность жидкости занимает промежуточное положение между теплопроводностью газов и твёрдых тел.
Конвекция
Как известно, газы и жидкости плохо проводят теплоту. В то же время от батарей парового отопления нагревается воздух. Это происходит благодаря такому виду теплопроводности, как конвекция.
Если вертушку, сделанную из бумаги, поместить над источником тепла, то вертушка начнёт вращаться. Это происходит потому, что нагретые менее плотные слои воздуха под действием выталкивающей силы поднимаются вверх, а более холодные движутся вниз и занимают их место, что и приводит к вращению вертушки.
Конвекция — вид теплопередачи, при котором энергия передаётся слоями жидкости или газа. Конвекция связана с переносом вещества, поэтому она может осуществляться только в жидкостях и газах; в твёрдых телах конвекция не происходит.
Излучение
Третий вид теплопередачи — излучение. Если поднести руку к спирали электроплитки, включённой в сеть, к горящей электрической лампочке, к нагретому утюгу, к батарее отопления и т.п., то можно явно ощутить тепло.
Опыты также показывают, что чёрные тела хорошо поглощают и излучают энергию, а белые или блестящие плохо испускают и плохо поглощают её. Они хорошо энергию отражают. Поэтому понятно, почему летом носят светлую одежду, почему дома на юге предпочитают красить в белый цвет.
Путём излучения энергия передаётся от Солнца к Земле. Поскольку пространство между Солнцем и Землёй представляет собой вакуум (высота атмосферы Земли много меньше расстояния от неё до Солнца), то энергия не может передаваться ни путём конвекции, ни путём теплопроводности. Таким образом, для передачи энергии путём излучения не требуется наличия какой-либо среды, эта теплопередача может осуществляться и в вакууме.
Конспект урока «Виды теплопередачи: теплопроводность, конвекция, излучение».
Следующая тема: «Количество теплоты. Удельная теплоёмкость».