Схема подключения четырехконтактного реле
Содержание:
- Электронное реле: схема и принцип работы
- Нюансы включения ходовых огней
- Реле электромагнитное 12V 4-х контактное с кронштейном АВАР
- Маркировка релейной защиты
- Основные параметры электромагнитных реле.
- Подключение противотуманок
- Доработка реле поворотов 495.3747 | Мастер Винтик. Всё своими руками!
- Каким требованиям должны соответствовать ПТФ?
- Основные виды реле и их назначение
- 1 Схема управления насосной станцией с задвижкой и двумя насосами
- Принцип работы и внешний вид
- Контакты реле
Электронное реле: схема и принцип работы
Периодичность мигания напрямую связана с емкостью конденсатора. Исключение составляет схема соединения реле поворотов типа РС и его аналогов, применяемых на грузовых автомобилях. Пока оценок нет.
Диапазон электропитания: 8…16В. Клемма которая расположена в другом направлении относительно остальных — это 30 или 87?
Реле как бы разделяет провод, идущий от блока предохранителей к насосу на две части, которые могут замыкаться внутри реле при подаче напряжения на управляющие контакты магнита. Подключение электронного реле от электромагнитнотеплового отличается лишь наличием вывода соединённого с массой автомобиля.
Схема блокировки двигателя с самоподхватом самоблокировкой.
А может и 3-канальным, что позволит подключать 4 полюса к нагрузке например, три фазы В 4.
Это обусловлено способом подключения контрольных ламп.
Для крепления корпуса имеются отверстия и проушины под болтовые соединения. Поэтому, любые изменения конструкции транспортного средства вы производите на свой страх и риск.
как подключается автомобильный сигнал
Нюансы включения ходовых огней
А чем больше деталей — тем меньше надежность. Я не рекомендую подключение ДХО по такой схеме. Это кажется сложным, но давайте разберемся на примере, и все станет ясно.
Теперь, если попытаться завести автомобиль при включенной охране, контакт 30 разомкнётся с контактом 87А и не даст завести двигатель. У вас нет возможности отключить ДХО до тех пор, пока вы не вытащите ключ из замка зажигания.
Собственно, запас по току никогда не мешает — но это касается в основном какого-то нештатного электрооборудования автомобиля, подключаемого самостоятельно.
Аналогично и 14,,8 вольт, до которых поднимается напряжение в бортсети при запущенном двигателе, им не вредит. Полярность его — безразлична для реле.
В таком виде схема имеет существенный недостаток. Существуют, конечно же, и более сложные реле, с несколькими группами контактов в одном корпусе — замыкающими, размыкающими, переключающими.
Схемы инверсии сигналов и управления нагрузкой. Подключаемся к слаботочным транзисторным выходам сигнализации.
Другой конец провода подцепляем к контакту 87А.
Как работает и устроено 5 — ти контактное реле
Реле электромагнитное 12V 4-х контактное с кронштейном АВАР
Принцип работы схемы примерно такой. К тому же их работа не согласована с работой остальных фар, а значит, не отвечает требованию ГОСТа. Так, например, в ВАЗ ток, идущий на втягивающее реле стартера через замок зажигания, достаточно быстро приводит к неисправности контактной группы замка. При установке противотуманных фар через реле автолюбитель может испытать некоторые сложности.
Яркость светодиодов снижается, такие ДХО уже не смогут выполнять свою непосредственную задачу — издалека предупреждать водителей встречного транспорта, а со временем и вовсе начнут мерцать и выйдут из строя. То есть при включении ближнего света, ДХО автоматически гаснут, а в остальных случаях работают.
Он, без подачи напряжения на контакты обмотки, постоянно замкнут на контакт 87а. Напряжение подается на управляющие контакты реле обмотку , обмотка притягивает силовые контакты реле друг к другу, реле срабатывает и замыкает или размыкает электрическую цепь своими силовыми контактами.
Вобщем как-то так! Некоторые автолюбители заявляют, что подключить ходовые огни можно и без стабилизатора.
Необходимо отметить, что при длительной работе реле в режимах максимальных нагрузок искра, проскакивающая при коммутации контактов создает нагар между этими контактами, из-за чего управляемое устройство может не работать или работать некорректно. Мощность нагрузки зависит от коммутационной способности аппарата обусловленного его конструкцией, на мощных электромагнитных коммутационных устройствах присутствует дугогасительная камера, для управления мощной резистивной и индуктивной нагрузкой, например электродвигателем.
Сечение 2,5 мм2 как раз самое то. Что означает подключение через реле и как это сделать?
После доработки, через контактную группу замка начинает проходить слабый управляющий ток, а уже реле подключает мощное питание стартера.
Подключение реле противотуманных фар
Маркировка релейной защиты
Электромагнитное реле постоянного тока
Чтобы обозначить релейную защиту, на чертежах применяются маркеры машин, приборов, аппаратов и самого реле. Все устройства изображают в условиях без напряжения во всех электролиниях. По типу назначения релейного прибора применяются три типа схем.
Принципиальные схемы
Принципиальный чертеж выполняется по отдельным линиям – оперативного тока, тока, напряжения, сигнализации. Реле на нем отрисовываются в расчлененном виде – обмотки находятся на одной части рисунка, а контакты – на другой. Маркировка внутреннего соединения, зажимов, источников оперативного тока на принципиальной схеме отсутствует.
Монтажная схема
Пример монтажной схемы
Маркировка устройств защиты производится на рабочих схемах, предназначенных для сборки панелей, управления или автоматики. Все приборы, зажимы, соединения или кабели отражают особенности подключения.
Монтажная схема также называется исполнительной.
Структурные схемы
Позволяют выделить общую структуру релейной защиты. Обозначаться будут уже узлы и типы взаимных связей. Для маркировки органов и узлов применяются прямоугольники с надписями или специальные индексы с разъяснением цели применения конкретного элемента. Структурную схему также дополняются условными знаками логических связей.
Основные параметры электромагнитных реле.
Основными параметрами, определяющими нормальную работоспособность реле и характеризующие эксплуатационные возможности, являются: 1. Чувствительность. 2. Ток (напряжение) срабатывания. 3. Ток (напряжение) отпускания. 4. Ток (напряжение) удержания. 5. Коэффициент запаса. 6. Рабочий ток (напряжение). 7. Сопротивление обмотки. 8. Коммутационная способность. 9. Износостойкость и количество коммутаций. 10. Количество контактных групп. 11. Временны́е параметры: время срабатывания, время отпускания, время дребезга контактов. 12. Вид нагрузки. 13. Частота коммутаций. 14. Электрическая изоляция.
Все эти параметры подробно приводятся в технических условиях (ТУ), справочниках или в руководствах по применению реле. Однако мы рассмотрим лишь некоторые из них, которыми, как правило, пользуются при повторении радиолюбительских конструкций.
1. Чувствительность реле определяется минимальной мощностью тока, подаваемой в обмотку реле и достаточной для приведения в движение якоря и переключения контактов. Чувствительность различных реле неодинаковая и зависит от конструкции реле и намоточных данных катушки. Чем меньше электрическая мощность тока, необходимая для срабатывания реле, тем реле чувствительнее. Как правило, обмотка более чувствительного реле содержит бо́льшее число витков и имеет бо́льшее сопротивление.
Однако в технической документации параметр чувствительность не указывается, а определяется как мощность срабатывания (Рср) и вычисляется из сопротивления обмотки и тока (напряжения) срабатывания:
2. Ток (напряжение) срабатывания определяет чувствительность реле при питании обмотки минимальным током или напряжением, при котором реле должно четко сработать и переключить контакты. А для их удержания в сработанном положении на обмотку подаются рабочие значения тока или напряжения.
Ток или напряжение срабатывания указывается в технической документации для нормальных условий и является контрольным параметром для проверки реле при их изготовлении и не является рабочим параметром.
3. Ток (напряжение) отпускания приводится в технической документации для нормальных условий и не является рабочим параметром. Отпускание реле (возвращение контактов в исходное состояние) происходит при снижении тока или напряжения в обмотке до значения, при котором якорь и контакты возвращаются в исходное положение.
4. Рабочий ток (напряжение) обмотки указывается в виде номинального значения с двухсторонними допусками, в пределах которых гарантируется работоспособность реле.
Верхнее значение рабочего тока или напряжения ограничивается в основном температурой нагрева провода обмотки, а нижнее значение определяется надежностью работы реле при снижении напряжения источника питания. При подаче на обмотку реле тока или напряжения в указанных пределах реле должно четко срабатывать.
5. Коммутационная способность контактов реле характеризуется величиной мощности, коммутируемой контактами. В технической документации коммутируемая мощность указывается верхним и нижним диапазоном коммутируемых токов и напряжений, в пределах которых гарантируется определенное число коммутаций (срабатываний).
Нижний предел токов и напряжений, коммутируемых контактами, ограничивается величиной переходного сопротивления материала, из которого выполнены контакты. Для большинства промежуточных электромагнитных реле нижним пределом является нагрузка контактов током 10 – 50 мкА при напряжении на контактах 10 – 50 мВ.
Верхним пределом токов и напряжений является нагрузка контактов максимальным коммутирующим током, предусмотренным в технической документации. Верхний предел ограничивается температурой нагрева контактов, при которой снижается механическая прочность контактных материалов, что может привести к нарушению рабочей поверхности.
Подключение противотуманок
Справиться с установкой противотуманных фар на авто сможет всякий водитель, имеющий представление, как правильно обращаться с инструментом. Если же вы умеете лишь управлять автомобилем, при этом не касаетесь инструментария, едва ли удастся оборудовать личный автомобиль противотуманками. В таком случае рекомендуется обратиться к специалистам станции технического обслуживания. Прежде чем подсоединить оборудование, понадобится собрать некоторые инструменты и материалы. Вам понадобятся:
- комплект проводов для подключения противотуманных фар;
- изолента;
- колодка и реле фар;
- колюще-режущие инструменты;
- предохранитель;
- кнопка включения.
Как только набор для подключения противотуманных фар собран и готов к работе, приступаем к подключению противотуманок. Ниже приведен алгоритм установки:
- Сначала понадобится снять центральную панель, где располагается пара лампочек подсветки регулятора печи
- Ведите рукой по проводам до того момента, как удастся нащупать разъем на два контакта, который пригодится в процессе подключения. К разъему впоследствии понадобится зафиксировать первый контакт на реле.
- Возьмите первый провод, после чего соедините с разъемом печной подсветки, тогда как второй провод подключите к кнопке
- Подведите провод к реле, благодаря чему удастся получить 12-вольтную цепь и контакт 85 (как показывает схема подключения противотуманных фар через реле приведённая ниже).
- Контакт 87 потребуется протянуть к аккумулятору под педалями автомобиля. Также на данном этапе устанавливается предохранитель, рассчитанный на максимальный ток в 15 ампер. Старайтесь разместить предохранитель ближе к аккумулятору
- Контакт 86 замыкается с кузовом автотранспорта.
- К каждой фаре подводятся два провода (+ и -). Оба плюса, идущие от фар, нужно соединить, тогда как минус соединяется с кузовом. Плюс подключается к соответствующей клемме аккумулятора. Подведите его к реле таким образом, чтобы провода оказались незаметными, а затем соедините с разъемом, обозначенным на схеме цифрой 30.
После того как вам удалось подключить противотуманные фары, обязательно их протестируйте, проверьте работоспособность. Если фары не включаются — допущена ошибка.
Доработка реле поворотов 495.3747 | Мастер Винтик. Всё своими руками!
В последнее время стало применение светодиодных автомобильных ламп. Они более долговечные и потребляют меньше тока. Последнее как раз и влияет на работу реле поворотов, изменяя его частоту. Периодичность работы реле привязана к сопротивлению нагрузки, то есть к установленным лампам. При увеличении сопротивления нагрузки, что именно и происходит при перегорании или размыкании одной из ламп реле начинает срабатывать наиболее часто. Тот же самый эффект наблюдается и при установке светодиодов в указатели поворотов, так как их потребляемая мощность меньше, а это значит сопротивление значительно больше.
Изучив материал данной статьи, вы сможете доработать штатное реле указателей поворотов для светодиодов, чтобы оно срабатывало с нужной вам периодичностью.
Прежде всего немного о штатном реле. Реле указателей поворотов 3 контактное о котором пойдет речь устанавливается на автомобили начиная с ВАЗ 2108 по настоящее время, то есть на ВАЗ 2109, 2110, 2111, 2112, Ладу Приору, Ладу Калину, автомобили ГАЗ. Маркировка 495.3747-ХХ.
Для доработки реле необходимо будет вскрыть корпус. Для этого возьмите отвертку с плоским лезвием и снимите крышку корпуса оттягивая пластмассу защелок с двух противоположных сторон.
Теперь разберемся, что в этой схеме за что отвечает и как нам изменить работу чтобы при увеличенной нагрузки не изменилась частота срабатывания указателей поворотов. Первое это подключение. К выводу 31 подключается масса. 49а — вывод на лампы, 49 — вход «+» от выключателя указателя поворотов.
R3 — резистор ограничивающий ток на управляющую базу транзистора в микросхеме; R1 и С11 — именно эти радиоэлементы и отвечают за частоту выходного сигнала от ножки 3 микросхемы. От ножки 3 осуществляется питание обмоткой реле; Вывод 7 — тоже интересный вывод. Вывод контролирующий изменение сопротивления и соответственно напряжения на контакте 49 а. Именно он и дает команду микросхеме менять частоту при перегорании ламп. Микросхемы могут стоять не только указанные на схеме, но и например,КР1055ГП1Б и т.п. аналоги. Теперь представляя функциональное назначение элементов реле, нетрудно определиться с мерами по сохранению частоты срабатывания указателей поворотов при изменении их внутреннего сопротивления, то есть например при установке светодиодов.
Возможно изменить номинал емкости, увеличить его в два раза (заменив на конденсатор 4,7 мкФ вместо 2,2 мкФ — на фото емкость увеличена за счет параллельного подключения дополнительного конденсатора к штатному), но при этом наблюдается некорректная работа аварийной сигнализации.
Она будет работать с частотой в два раза ниже. Вариант с изменением сопротивления тоже не совсем удачен. Так как фактически здесь придется эмпирическим путем подбирать резистор ограничивающий ток на вывод 4, тоже не совсем удачный вариант.
Схема включения реле поворотов 495.3747
Остается последний и пожалуй наилучший выход. Фактически убрать контроль за сопротивлением нагрузки. Разрезав фольгу на печатной плате (красная линия) идущую к выводу 7 микросхемы мы получим устойчивое по частоте срабатывание указателей поворотов.
После этой переделки резистор R2 нужно уменьшить до 60 — 200 Ом.
Единственным недостатком такой доработки реле для светодиодов будет отсутствие за контролем перегоревших светодиодов, так как мы убрали фактически зависимость частоты от сопротивления нагрузки.
Использованы материалы сайта: autosecret.net
Как защитить кузов своего автомобиля от коррозии не переплачивая автомеханику.
Так как я заядлый автомобилист, меня интересует все что связанно с машинами. Перед каждым авто владельцем стоит задача защиты кузова автомобиля от коррозии. О таком оригинальном способе я читал и раньше, еще в начале прошлого века его использовали при защите корпусов кораблей. Но с коммерческим применением такой чудо технологии я столкнулся впервые. Читая рекламу в газетах я наткнулся на рекламу «Электрохимическая защита кузова автомобиля от коррозии», прочитав краткую статью я решил узнать поподробней в самом автосервисе. Подробнее…
Звуковой сигнализатор для автомобиля.
Звуковой сигнализатор автомобиля предназначен для дублирования двухтональным сигналом всех аварийных и «поворотной» контрольных ламп автомобиля, а также сигнализирования о превышении бортового напряжения свыше 17в.
Подробнее…
Способы отопления гаража
Очень удобно хранить машину в гараже. Особенно зимой — она лучше заводится, меньше происходит износ деталей и т.д. и т.п. Гараж — это хороший домик для вашего любимого авто
Каким требованиям должны соответствовать ПТФ?
Напоследок отметим, каким правилам должны отвечать современные противотуманные фары:
Для того чтобы хорошо освещать дорожное полотно, данный вид оптики должен иметь четкую границу пучка вверху. Таким образом, свет в фарах рассеивается немного выше горизонтальной плоскости.
Если автопроизводитель не предусмотрел места для креплений ПТФ, ни в коем случае не устанавливайте их выше фар головного света. Старайтесь размещать их как можно ближе к дорожному полотну. Чем ниже будет находиться данная оптика, тем лучше она будет «разбивать» туманную преграду перед вами. Но не забываем и о дорожном просвете автомобиля. Если фара будет расположена на расстоянии 10 сантиметров от асфальта, то во время дождливой погоды она постоянно будет намокать, а вода, попавшая вовнутрь к отражателю, задержится там на несколько недель. И весь этот период стекло будет мутным, а качество освещения значительно ухудшится. На машинах типа ВАЗ «классика» оптимальным решением проблемы является установка ПТФ под стальным бампером. Так вы «убьете сразу двух зайцев». Во-первых, на таком расстоянии от дороги фара никогда не будет намокать, а во-вторых, смотрится она очень привлекательно и не уродует внешний облик машины. А вот где вообще нет смысла монтировать ПТФ, так это на крыше (часто так поступают владельцы внедорожников). Польза от такой иллюминации нулевая, зато слепить такая техника будет в полной мере.
Если это не заводская оптика, желательно приобретать ее со специальными заглушками. Так вы значительно увеличите ресурс эксплуатации фар и обеспечите им высокую безопасность при езде по пересеченной местности
А защищает противотуманки заглушка круглый год в любое время суток.
При эксплуатации важно не допустить помутнения или запотевания стекол оптики. Чтобы это предотвратить, следует регулярно обрабатывать их поверхность специальными полиролями (хотя бы раз в 2-3 месяца).
Основные виды реле и их назначение
Производители настраивают современные коммутационные устройства таким образом, чтобы срабатывание происходило только при определенных условиях, например, при увеличении силы тока, поступающего на входные клеммы КУ. Ниже мы вкратце рассмотрим основные виды соленоидов и их назначение.
Электромагнитные реле
Электромагнитное реле – это электромеханическое коммутационное устройство, принцип действия которого основан на воздействии магнитного поля, созданного током в статичной обмотке, на якорь. Этот вид КУ разделяется собственно на электромагнитные (нейтральные) устройства, которые реагируют лишь на значение тока, подаваемого на обмотку, и поляризованные, работа которых зависит как от токовой величины, так и от полярности.
Принцип работы электромагнитного соленоида
Используемые в промышленном оборудовании электромагнитные реле находятся на промежуточной позиции между сильноточными устройствами (магнитными пускателями, контакторами и т.д.) и слаботочным оборудованием. Наиболее часто данный вид реле применяется в цепях управления.
Реле переменного тока
Срабатывание этого вида реле, как видно из названия, происходит при подаче на обмотку переменного тока определенной частоты. Данное коммутирующее устройство для переменного тока с контролем перехода фазы через ноль или без такового, представляет собой блок из тиристоров, выпрямительных диодов и управляющих схем. Реле переменного тока могут быть выполнены в виде модулей на основе трансформаторной или оптической развязки. Данные КУ применяются в сетях переменного тока с максимальным напряжением 1,6 кВ и средним током нагрузки до 320 A.
Промежуточное реле 220 В
Иногда работа электросети и приборов не возможна без использования промежуточного реле на 220 В. Обычно КУ данного типа применяется, если необходимо разомкнуть или разомкнуть разнонаправленные контакты цепи. К примеру, если используется осветительный прибор с датчиком движения, то один проводник присоединяется к сенсору, а другой подводит электроэнергию к светильнику.
Реле переменного тока широко применяются в промышленном оборудовании и бытовой технике
Работает это таким образом:
- подача тока на первое коммутационное устройство;
- от контактов первого КУ ток поступает на следующее реле, которое имеет более высокие характеристики, чем у предыдущего и способно выдерживать токи с высокими значениями.
С каждым годом реле становятся эффективней и компактней
Функции малогабаритного реле переменного тока с напряжением 220 В весьма разнообразны и широко используются в качестве вспомогательного устройства в самых различных областях. Данный вид КУ применяется в тех случаях, когда основное реле не справляется со своей задачей или же при большом количестве управляемых сетей которые уже не в состоянии обслужить головное устройство.
Промежуточное коммутационное устройство применяется в промышленном и медицинском оборудовании, транспорте, холодильном оборудовании, телевизорах и прочей бытовой технике.
Реле постоянного тока
Реле постоянного тока делятся на нейтральные и поляризованные. Отличие между ними состоит в том, что поляризованные КУ постоянного тока чувствительны к полярности подаваемого напряжения. Якорь коммутационного устройства меняет направление движения в зависимости от полюсов питания. Нейтральные электромагнитные реле постоянного тока не зависят от полярности напряжения.
Электромагнитные КУ постоянного тока в основном используют, когда нет возможности подключения к электрической сети переменного тока.
Четырехконтактное автомобильное реле
К недостаткам соленоидов постоянного тока относят необходимость использования блока питания и более высокую стоимость в сравнении с КУ переменного тока.
Данное видео демонстрирует схему подключения и объясняет принцип работы 4 контактного реле:
Watch this video on YouTube
Электронное реле
Электронное реле управления в схеме прибора
Разобравшись с тем, что такое токовое реле, рассмотрим электронный тип этого устройства. Конструкция и принцип действия электронных реле практически те же, что и в электромеханических КУ. Однако, для выполнения необходимых функций в электронном устройстве используется полупроводниковый диод. В современных транспортных средствах большинство функций реле и переключателей выполняют электронные релейные блоки управления и на данный момент невозможно полностью от них отказаться. Так, например, блок электронных реле позволяет контролировать расход энергии, величину напряжения на клеммах аккумуляторных батарей, управлять системой освещения и т.д.
1 Схема управления насосной станцией с задвижкой и двумя насосами
В тексте и схеме выделил места, которые надо согласовать с технологией работы схемы (давление, уровень, и т.д.)
Схема управления насосной станцией с задвижкой и двумя насосами
Схема содержит двигатель задвижки М1 с реверсивным управлением и два двигателя насосов М2 и М3.
Схема управления насосной станцией с задвижкой и двумя насосами
Рассмотрим работу задвижки
Двигатель задвижки М1 включается через контакторы КМ1 и КМ2, которые обеспечивают реверс для открытия и закрытия задвижки. Схема управления задвижкой содержит две основные части – схема открытия, схема закрытия, и общие цепи.
К общим цепям можно отнести:
- SL – поплавковое реле уровня, его контакты замыкаются при низком уровне жидкости,
- SP – реле давления, его контакты замыкаются при нужном давлении жидкости.
- SB1 – кнопка Стоп,
- SQ3, SQ4 – аварийные выключатели задвижки,
- KL1 – блокировочное реле, для правильной работы задвижки.
Цепи открытия задвижки:
- SB2 – ручное открытие,
- SQ2 – конечный выключатель открытого положения задвижки,
- КМ1 – катушка контактора открытия задвижки,
- HL2 – индикатор наличия общего питания и индикатор открывания.
Цепи закрытия задвижки:
- SB3 – ручное закрытие,
- SQ1 – конечный выключатель закрытого положения задвижки,
- КМ2 – катушка контактора закрытия задвижки,
- HL1 – индикатор наличия питания цепей открывания/закрывания и процесса закрывания.
В исходном состоянии задвижка закрыта, что контролируется конечным выключателем SQ1.
Открытие либо закрытие задвижки может происходить, только при низком уровне и нужном давлении жидкости и не активных аварийных концевых выключателях SQ3, SQ4.
Задвижка может открываться только если работает один из насосов. При этом включается реле KL1, и нормально открытый контакт этого реле включает контактор КМ1, который включает двигатель задвижки в направлении открытия. Задвижка открывается до тех пор, пока не сработает концевой выключатель SQ2.
Далее, при выключении насоса выключается реле KL1, и через его нормально закрытый контакт включается контактор КМ2, который включает двигатель задвижки в направлении закрытия. Задвижка закрывается до тех пор, пока не сработает концевой выключатель SQ1.
Задвижка может оставаться в промежуточном положении, если в процессе открытия либо закрытия разомкнутся контакты реле уровня или давления SL и SP.
Задвижкой можно управлять вручную, с помощью кнопок SB1, SB2, SB3.
Двигатель задвижки М1 включается через мотор-автомат SQ1 и силовые контакты КМ1 (открытие) либо КМ2 (закрытие).
Рассмотрим работу насосов
Система содержит два двигателя насоса, которые работают поочередно. Выбор насоса осуществляется вручную, с помощью переключателя SA1, который имеет 2 положения. В положении 1 (левая верхняя точка на схеме переключателя) работает контактор КМ3 (двигатель М2, насос Н1). В положении 2 работает контактор КМ4 (двигатель М3, насос Н2).
После выбора насоса для его включения нужно нажать кнопку Пуск SB5. Допустим, выбран насос Н1. После нажатия кнопки SB5 напряжение схемы управления поступает через защитный автомат QF2, кнопку Стоп SB4, кнопку Пуск SB5, переключатель SA1, нормально закрытые контакты КМ4, и питают левый вывод катушки контактора КМ3. Правый вывод контактора КМ3 питается через нормально закрытый контакт теплового реле КК1. Контактор КМ3 при отпускании кнопки Пуск SB5 остается включенным, благодаря контакту самопитания КМ3.
Силовые контакты КМ3 замыкаются, три фазы поступают через мотор-автомат QF3, контакты КМ3, тепловое реле КК1 на двигатель М2 насоса Н1.
Насос Н2 при его выборе переключателем SA1 работает аналогично, через свои цепи управления и питания.
Отключение работающего насоса производится тремя путями:
- Штатно – нажатием кнопки Стоп SB4,
- Переключателем SA1, после этого оба насоса будут в выключенном состоянии,
- Аварийно – при срабатывании теплового реле КК1 либо КК2 вследствие перегрузки двигателя либо обрыва фазы.
Принцип работы и внешний вид
Если говорить обобщенно, реле представляет собой электрический механизм, замыкающий или разрывающий электрическую цепь. Его работа осуществляется исходя из электрических или других параметров, которые на него действуют.
Выбирая режим работы реле нужно руководствоваться частотой включений, величиной тока, а также характером испытываемых нагрузок.
Конструкция состоит из следующих компонентов:
- Катушки.Катушка является медным проводом, который намотан на немагнитный материал; может находиться в тканевой изоляции или быть покрытым специальным лаком, который не пропускает электричество;
- Сердечника.Он содержит железо и приходит в действие при проходе тока через витки катушки;
- Подвижного якоря.Такой якорь является пластиной, крепящейся к якорю, он воздействует на замыкающие контакты;
- Контактной системы.Она является переключателем состояния цепи.
В основе работы реле – электромагнитная сила, появляющаяся в сердечнике катушки при пропускании через нее тока.
Катушка является втягивающим устройством, в котором сердечник связан с подвижным якорем. Он и приводит в действие силовые контакты. А к катушке можно дополнительно подключать резистор для увеличения точности срабатывания.
Контакты реле
Как уже видно из обозначений, контакты реле могут быть в исходном состоянии (без подачи напряжения на обмотку) замкнутыми или разомкнутыми. Соответственно, они называются нормально замкнутыми (Normally Closed, NC) или нормально разомкнутыми (Normally Open, NO).
Очень часто контактная группа содержит и нормально замкнутый, и нормально разомкнутый контакт.
Это при подаче напряжение на обмотку контакты как бы меняются местами: нормально замкнутый становится разомкнутым, а нормально разомкнутый замыкается.
Такую совокупность нормально замкнутого и нормально разомкнутого контакта называют переключающим контактом.
В англоязычной литературе для описания контактов используются специальные аббревиатуры:
SPST (Single Pole, Single Throw) — один полюс, одно направление. Другими словами – это один нормально замкнутый или нормально разомкнутый контакт.
SPDT (Single Pole, Double Throw) — один полюс, два направления. Это комбинация нормально замкнутого и нормально разомкнутого контакта. Иными словами – переключающий контакт. При этом один из полюсов (контактов) называется общим (СOM), а другие – NC (с которым COM замкнут) и NO (с которым COM разомкнут).
DPST (Double Pole, Single Throw) — два полюса, одно направление. Это две группы контактов, комбинация из двух переключателей SPST, которые переключаются одновременно.
DPDT (Double Pole, Double Throw) — два полюса, два направления. Это также две группы контактов, комбинация из двух переключателей SPDT, которые переключаются одновременно.
В даташитах для обозначения контактов реле используются и другие обозначения:
- Form A – нормально разомкнутый контакт,
- Form B – нормально замкнутый контакт,
- Form C – переключающий контакт.
Перед буквой может стоять цифра, обозначающая количество групп контактов.
Так, например, 1А обозначает одну группу из одного нормально разомкнутого контакта, 2В – две группы, каждая из которых имеет один нормально замкнутый контакт, 3С – три группы, каждая из которых имеет один переключающий контакт.