В чем измеряется радиация

Допустимые и смертельные дозы для человека

См. также: НРБ-99

Миллизиверт (мЗв) часто используется как мера дозы при медицинских диагностических процедурах (рентгеноскопия, рентгеновская компьютерная томография и т. п.).

Согласно постановлению главного государственного санитарного врача России за № 11 от 21 апреля 2006 г. «Об ограничении облучения населения при проведении рентгенорадиологических медицинских исследований», п. 3.2, необходимо «обеспечить соблюдение годовой эффективной дозы 1 мЗв при проведении профилактических медицинских рентгенологических исследований, в том числе при проведении диспансеризации». Среднемировая доза облучения от рентгенологических исследований, накопленная на душу населения за год, равна 0,4 мЗв, однако в странах с высоким уровнем доступа к медобслуживанию (более одного врача на 1000 человек населения) этот показатель растёт до 1,2 мЗв. Облучение от других техногенных источников значительно меньше: 0,005 мЗв от радионуклидов, оставшихся от атмосферных ядерных испытаний, 0,002 мЗв от Чернобыльской катастрофы, 0,0002 мЗв от ядерной энергетики.

Среднемировая доза облучения от естественных источников, накопленная на душу населения за год, равна 2,4 мЗв, с разбросом от 1 до 10 мЗв. Основные компоненты:

  • 0,4 мЗв от космических лучей (от 0,3 до 1,0 мЗв, в зависимости от высоты над уровнем моря);
  • 0,5 мЗв от внешнего гамма-излучения (от 0,3 до 0,6 мЗв, в зависимости от радионуклидного состава окружения — почвы, стройматериалов и т. п.);
  • 1,2 мЗв внутреннего облучения от ингалируемых атмосферных радионуклидов, главным образом радона (от 0,2 до 10 мЗв, в зависимости от местной концентрации радона в воздухе);
  • 0,3 мЗв внутреннего облучения от инкорпорированных радионуклидов (от 0,2 до 0,8 мЗв, в зависимости от радионуклидного состава пищевых продуктов и воды).

При однократном равномерном облучении всего тела и неоказании специализированной медицинской помощи смерть в результате острой лучевой болезни наступает в 50 % случаев:

  • при дозе порядка 3—5 Гр из-за повреждения костного мозга в течение 30—60 суток;
  • 10 ± 5 Гр из-за повреждения желудочно-кишечного тракта и лёгких в течение 10—20 суток;
  • > 15 Гр из-за повреждения нервной системы в течение 1—5 суток.

3.5. Эквивалентная доза

При
одной и той же поглощенной дозе различные
виды излучений (альфа-, бэта-, гамма-излучения
и др.) оказывают различные биологические
эффекты. Объясняется это различной
ионизирующей способностью. Для
количественной оценки качества излучения,
т. е. для сравнения различных видов
излучения, введено понятие относительной
биологической эффективности

(ОБЭ).

ОБЭ оценивают
сравнением дозы излучения, вызывающий
определенный биологический эффект, с
дозой стандартного излучения,
обусловливающего тот же эффект. ОБЭ
указывает, во сколько раз биологический
эффект при воздействии данного вида
излучения сильней за действия стандартного
облучения на биологический объект
(клетку, организм в целом). Обычно в
качестве стандартного излучения
используют рентгеновское излучение с
энергией в 180-250 кэВ. Значение (величину,
коэффициент) ОБЭ вычисляют по отношению
дозы рентгеновского излучения к дозе
данного излучения.

Регламентированные
значения ОБЭ, установленные для контроля
степени радиационной опасности при
хроническом облучении, называют
коэффициентом качества (КК) излучения.
Коэффициент качества показывает, во
сколько раз данный вид излучения более
биологически опасен, чем рентгеновское
и гамма-излучение при одинаковой
поглощенной дозе. Для рентгеновского
излучения, гамма-излучения, электронов
и позитронов КК равен 1,0; для нейтронов
с энергией меньше 20 кэВ – 3; для протонов
с энергией меньше 10 МэВ – 10; для нейтронов
с энергией 0,1 – 10 МэВ – 10; для альфа-излучений
и тяжелых ядер отдачи – 20. Это означает,
что альфа-излучение, которое попадает
внутрь организма, в 20 раз более опасно,
чем гамма-излучение. С учетом различия
в повреждающем воздействии разных
ионизирующих излучений на организм
человека применяется понятие эквивалентной
дозы. При ее помощи оцениваются вредные
эффекты биологического воздействия
любого типа ионизирующих излучений.

Эквивалентная
доза

это произведение поглощенной дозы
излучения в биологической ткани на
коэффициент качества этого излучения
в данной биологической ткани. Единицей
эквивалентной дозы в СИ является зиверт
(Зв). 1 3в = Дж/кг, т.е. зиверт равен
эквивалентной дозе, при которой
произведение поглощенной дозы в
биологической ткани стандартного
состава на средний коэффициент качества
равно 1Дж/кг. Используются также
производные единицы: мЗв – миллизиверт
(в тысячу раз меньше Зв); мкЗв – микрозиверт
(в миллион раз меньше Зв).

Эквивалентная
доза ионизирующего излучения является
основной величиной, определяющей уровень
радиационной опасности при хроническом
облучении человека в малых дозах. Понятие
эквивалентной дозы и коэффициента
качества применяют только при дозах в
10 ПДД (предельно допустимых доз). При
больших дозах используют поглощенную
дозу и соответствующие коэффициенты
ОБЭ (Кобэ). Кобэ – отношение доз
стандартного излучения (гамма-излучения
60Со)
и исследуемого ионизирующего излучения,
необходимых для получения одинакового
биологического эффекта. Кобэ для быстрых
нейтронов равен 0,7-0,8, альфа-излучения
– 0,55-1,3, нейтронов деления – 1,6-4,42.

Внесистемной
единицей эквивалентной дозы является
бэр (биологический эквивалент рентгена).
Бэр – это поглощенная доза любого вида
ионизирующего излучения, которая имеет
такую же биологическую эффективность,
как и один рад.

Соотношение
между дозами: 1Зв = 1 Дж/кг; 1 Зв = 100бэр;

1
бэр = 0,01 Зв = 10
–2 Дж/кг,
1 бэр = 10 мЗв

Мощность эквивалентной
дозы – отношение эквивалентной дозы к
единице времени. Зв/с, мкЗв/час. Допустимая
средне годовая мощность эквивалентной
дозы при облучении всего тела работающих
при 36 часовой рабочей неделе равен 28
мкЗв/час, естественный фон создает
мощность эквивалентной дозы в пределах
0,05 – 0,2 мкЗв/час (по данным МКРЕ –
Международной комиссии по радиологическим
единицам и измерениям).

Поскольку коэффициент
качества равен и больше единицы, то и
эквивалентная доза больше поглощенной
(или равна ей). Например, для бета-излучения
КК = 1 и эквивалентной дозе в 1 Зв
соответствует поглощенная доза в 1 Гр.
Для альфа-излучения КК = 20 поэтому
эквивалентной дозе в 1 Зв соответствует
поглощенная доза в 0,05 Гр (1:20).

Допустимые дозы радиации

  • допустимый уровень радиоактивного излучения от естественных источников излучения, иначе говоря естественный радиоактивный фон, в соответствии с нормативными документами, может быть в течении пяти лет подряд не выше чем

    0,57 мкЗв/час

В последующие года, радиационный фон должен быть не выше  0,12 мкЗв/час

предельно допустимой суммарной годовой дозой, полученной от всех техногенных источников, является

1 мЗв/год

Величина 1 мЗв/год, суммарно должна включать в себя все эпизоды техногенного воздействия радиации на человека. Сюда входят все типы медицинских обследований и процедур, включает флюорографию, рентген зуба и так далее. Так же сюда относятся полеты на самолетах, прохождение через досмотр в аэропорту, получение радиоактивных изотопов с пищей и так далее.

Экспозиционная доза

Основная статья: Экспозиционная доза

Основная характеристика взаимодействия ионизирующего излучения со средой — это ионизационный эффект. Количественная мера, основанная на величине ионизации сухого воздуха при нормальном атмосферном давлении, достаточно легко поддающаяся измерению, получила название экспозиционная доза.

Экспозиционная доза — это отношение суммарного электрического заряда ионов одного знака, образованных после полного торможения в воздухе электронов и позитронов, освобождённых или порождённых фотонами в элементарном объёме воздуха, к массе воздуха в этом объёме.

В международной системе единиц (СИ) единицей измерения экспозиционной дозы является кулон, делённый на килограмм (Кл/кг). Внесистемная единица — рентген (Р). 1 Кл/кг = 3876 Р.

Единица измерения дозы облучения / дозы радиации Зиверт. Единица измерения радиации Зиверт. Опасные и повседневные уровни радиации.

Зиверт (обозначение: Зв, Sv) — единица измерения СИ эффективной и эквивалентной доз ионизирующего излучения (используется с 1979 г.). 1 зиверт — это количество энергии, поглощенное килограммом биологической ткани, равное по воздействию поглощенной дозе 1 Гр (1 Грей).

Через другие единицы измерения СИ зиверт выражается следующим образом:1 Зв = 1 Дж/кг = 1 м2 / с2 (для излучений с коэффициентом качества, равным 1,0)

  • Равенство зиверта и грея показывает, что эффективная доза и поглощeнная доза имеют одинаковую размерность, но не означает, что эффективная доза численно равна поглощeнной дозе. При определении эффективной дозы учитывается биологическое воздействие радиации, она равна поглощённой дозе, умноженной на коэффициент качества, зависящий от вида излучения и характеризует биологическую активность того или иного вида излучения. Имеет большое значение для радиобиологии.
  • Единица названа в честь шведского учeного Рольфа Зиверта.
  • Раньше (а иногда и сейчас) использовалась единица бэр(биологический эквивалент рентгена), англ. rem (roentgen equivalent man) — устаревшая внесистемная единица измерения эквивалентной дозы. 100 бэр равны 1 зиверту. Также верно что 100 рентген = 1 зиверт с оговоркой, что рассматривается биологическое действие рентгеновского излучения.

Кратные и дольные единицы зиверта:

Десятичные кратные и дольные единицы образуют с помощью стандартных приставок СИ.

Кратные Дольные
величина название обозначение величина название обозначение
101 Зв деказиверт даЗв daSv 10-1 Зв децизиверт дЗв dSv
102 Зв гектозиверт гЗв hSv 10-2 Зв сантизиверт сЗв cSv
103 Зв килозиверт кЗв kSv 10-3 Зв миллизиверт мЗв mSv
106 Зв мегазиверт МЗв MSv 10-6 Зв микрозиверт мкЗв µSv
109 Зв гигазиверт ГЗв GSv 10-9 Зв нанозиверт нЗв nSv
1012 Зв теразиверт ТЗв TSv 10-12 Зв пикозиверт пЗв pSv
1015 Зв петазиверт ПЗв PSv 10-15 Зв фемтозиверт фЗв fSv
1018 Зв эксазиверт ЭЗв ESv 10-18 Зв аттозиверт аЗв aSv
1021 Зв зеттазиверт ЗЗв ZSv 10-21 Зв зептозиверт зЗв zSv
1024 Зв йоттазиверт ИЗв YSv 10-24 Зв йоктозиверт иЗв ySv
     
применять не рекомендуется

Допустимые и смертельные дозы радиации для человека

  • Миллизиверт часто используется как мера дозы при медицинских диагностических процедурах (рентгеноскопия, рентгеновская компьютерная томография и т. п.).
  • Согласно постановлению главного государственного санитарного врача России за № 11 от 21 апр. 2006 г. «Об ограничении облучения населения при проведении рентгенорадиологических медицинских исследований», п. 3.2, необходимо «обеспечить соблюдение годовой эффективной дозы 1 мЗв при проведении профилактических медицинских рентгенологических исследований, в том числе при проведении диспансеризации».
  • Естественное фоновое ионизирующее излучение в среднем равно 2,4 мЗв/год. При этом разброс значений фонового излучения в разных точках Земли составляет 1—10 мЗв/год.

При однократном равномерном облучении всего тела и неоказании специализированной медицинской помощи смерть наступает в 50 % случаев:

  • при дозе порядка 3-5 Зв из-за повреждения костного мозга в течение 30—60 суток;
  • 10 ± 5 Зв из-за повреждения желудочно-кишечного тракта и лeгких в течение 10—20 суток;
  • > 15 Зв из-за повреждения нервной системы в течение 1—5 суток.

Ионизирующий вид излучения, его природа и источники

Поглощенная доза ионизирующего излучения может измеряться в различных единицах СИ, и зависит от природы излучения. Самые значимые виды излучения: гамма-излучение, бета-частицы позитронов и электронов, нейтронное, ионное (включая альфа-частицы), рентгеновское, электромагнитное с короткими волнами (фотоны с высокой энергией) и мюонное.

Природа источников ионизирующего излучения может быть самой разнообразной, например: спонтанно произошедший радионуклидный распад, реакции термоядерного характера, лучи из космоса, искусственно созданные радионуклиды, реакторы ядерного типа, ускоритель элементарных частиц и даже аппарат, предназначенный для рентгена.

Сводная таблица единиц измерения

Физическая величина Внесистемная единица Единица СИ Переход от внесистемной единицы к единице СИ
Активность нуклида в радиоактивном источнике Кюри (Ки) Беккерель (Бк) 1 Ки = 3.7·1010 Бк
Экспозиционная доза Рентген (Р) Кулон/килограмм (Кл/кг) 1 Р = 2,58·10−4 Кл/кг
Поглощенная доза Рад (рад) Грей (Дж/кг) 1 рад = 0,01 Гр
Эквивалентная доза Бэр (бэр) Зиверт (Зв) 1 бэр = 0,01 Зв
Мощность экспозиционной дозы Рентген/секунда (Р/c) Кулон/килограмм (в) секунду (Кл/кг·с) 1 Р/c = 2.58·10−4 Кл/кг·с
Мощность поглощенной дозы Рад/секунда (Рад/с) Грей/секунда (Гр/с) 1 рад/с = 0.01 Гр/c
Мощность эквивалентной дозы Бэр/секунда (бэр/с) Зиверт/секунда (Зв/с) 1 бэр/c = 0.01 Зв/с
Интегральная доза Рад-грамм (Рад·г) Грей-килограмм (Гр·кг) 1 рад·г = 10−5 Гр·кг

Виды радиационного излучения

Радиация может быть нескольких различных видов, каждый из которых характеризуется собственными поражающими факторами. Радиационный фон, который присутствует на Земле, подразделяется на естественный (имеющий природное происхождение) и искусственный (имеющий техногенное происхождение). Так, любой человек постоянно находится в поле того или иного источника радиации.

Реакция ядерного распада широко применяется для получения энергии. На её основе построены все АЭС. Ядерное топливо обладает поразительной эффективностью и энергоёмкостью. Так, чтобы нагреть 100 тонн воды, потребуется радиоактивный изотоп массой всего лишь 1 г.

Радиационные волны подразделяются на:

  • альфа-волны;
  • бета-волны;
  • гамма-волны;
  • нейтронное излучение.

Альфа-излучение возникает при ядерном распаде тяжёлых химических элементов, среди которых уран, радий, торий и прочие. Их зона поражения ограничена небольшим расстоянием, считаемым от места возникновения: в воздухе — примерно 8−10 см, в биологических средах — всего лишь 0,01−0,05 мм.

Альфа-волны не могут проникнуть даже сквозь лист обыкновенной бумаги и клетки ороговевшего эпителия. Однако если частицы всё же попадут в человеческих организм, например, посредством участков кожи с нарушенной целостностью покровов или через ротовую полость, то, проникнув в кровяное русло, они разнесутся по всему организму и осядут преимущественно в эндокринных железах и лимфатических узлах, что приведёт к внутреннему отравлению, тяжесть которого будет зависеть от полученной дозы.

Бета-излучение представляет собой поток электронов при ядерном распаде радиоактивных элементов. Бета-частицы способны проникать в человеческих организм на расстояние до 20 см. Бета-излучение нашло широкое применение в лучевой терапии при лечении онкологических заболеваний.

Нейтронное излучение — поток электрически нейтральных частиц. Для него характерны наибольшая сила и глубина проникновения. Данные волны применяются в качестве ускорителя других частиц в научных целях на промышленных предприятиях, а также в различных лабораторных исследованиях.

Читать также Радиоактивный металл полоний-210 и его качества как яда

Гамма-излучение также обладает достаточно высокой проникающей способностью. Оно не несёт в себе заряженных частиц и, следовательно, не попадает под действие магнитных и электрических полей. Применяется в следующих областях:

  1. Медицина: лучевая терапия.
  2. Пищевая промышленность: консервирование.
  3. Отрасль космической промышленности.
  4. Геофизические исследования.

Гамма-частицы способны вызывать острую лучевую болезнь (ОЛБ) при единичных больших дозах облучения, и хроническую — при длительном воздействии ионизирующего фактора.

Симптоматика лучевой болезни

Если нормальная доза радиации была превышена не критически, то появляются симптомы лучевой травмы. Среди них выделяют:

  • Приступы тошноты и рвоты.
  • Сухость слизистых поверхностей носоглотки.
  • Во рту ощущается вкус горечи.
  • Появляются сильные головные боли.
  • Пострадавший быстро устает, его покидают жизненные силы.
  • Снижается артериальное давление.

В случае превышения дозы облучения в 10 Зв наблюдаются следующие признаки:

  • Покраснение отдельных участков кожи. Со временем они приобретают синий оттенок.
  • Изменяется частота сокращения сердечной мышцы.
  • Снижается мышечный тонус.
  • Появляется тремор в пальцах.
  • Пропадает сухожильный рефлекс.

Спустя четыре дня выраженные симптомы пропадают. Заболевание переходит в скрытую форму. Ее продолжительность будет зависеть от степени поражения организма. При этом в значительной степени снижаются все рефлексы организма, проявляются симптомы невралгического характера.

Если доза облучения превышала 3 ЗВ, то спустя две недели начинается интенсивное облысение. При дозе выше 10 Зв заболевание сразу же переходит в третью фазу. Наблюдается серьезное изменение состава крови, развиваются инфекционные заболевания. В кратчайшие сроки наступает отек мозга, полностью пропадает мышечный тонус. В подавляющем большинстве случаев человек погибает.

Эффективная доза

Эффективная доза (E) — величина, используемая как мера риска возникновения отдалённых последствий облучения всего тела человека и отдельных его органов и тканей с учётом их радиочувствительности. Она представляет сумму произведений эквивалентной дозы в органах и тканях на соответствующие взвешивающие коэффициенты.

Одни органы и ткани человека более чувствительны к действию радиации, чем другие: например, при одинаковой эквивалентной дозе возникновение рака в лёгких более вероятно, чем в щитовидной железе, а облучение половых желез особенно опасно из-за риска генетических повреждений. Поэтому дозы облучения разных органов и тканей следует учитывать с разным коэффициентом, который называется взвешивающим коэффициентом ткани. Умножив значение эквивалентной дозы на соответствующий взвешивающий коэффициент и просуммировав по всем тканям и органам, получим эффективную дозу, отражающую суммарный эффект для организма. Взвешивающие коэффициенты устанавливают эмпирически и рассчитывают таким образом, чтобы их сумма для всего организма составляла единицу.

Единицы измерения эффективной дозы совпадают с единицами измерения эквивалентной дозы. Она также измеряется в зивертах или бэрах.

Ожидаемая эффективная доза E(τ) — доза внутреннего облучения от поступивших в организм человека радионуклидов. Время облучения человека такими радионуклидами определяется периодами их полураспада и биологического удержания в организме и может составлять многие месяцы и даже годы. Для целей регулирования полный период накопления дозы устанавливается равным 50 лет для взрослого человека или, если оценивается доза для детей, до достижения 70 лет. При оценке годовой дозы ожидаемая эффективная доза суммируется с эффективной дозой от внешнего облучения за этот же период.

Эффективная и эквивалентная дозы — это нормируемые величины, то есть, величины, являющиеся мерой ущерба (вреда) от воздействия ионизирующего излучения на человека. К сожалению, они не могут быть непосредственно измерены. Поэтому в практику введены операционные дозиметрические величины, однозначно определяемые через физические характеристики поля излучения в точке, максимально возможно приближенные к нормируемым.
Основной операционной величиной является амбиентный эквивалент дозы (синонимы — эквивалент амбиентной дозы, амбиентная доза).

Амбиентный эквивалент дозы Н*(d) — эквивалент дозы, который был создан в шаровом фантоме МКРЕ (международной комиссии по радиационным единицам) на глубине d (мм) от поверхности по диаметру, параллельному направлению излучения, в поле излучения, идентичном рассматриваемому по составу, флюенсу и энергетическому распределению, но мононаправленном и однородном, то есть амбиентный эквивалент дозы Н*(d) — это доза, которую получил бы человек, если бы он находился на месте, где проводится измерение.
Единица амбиентного эквивалента дозы — зиверт (Зв).

Вынужденные диагностические дозы рентген облучения

Величина эквивалентной поглощенной дозы при каждом рентгенобследовании может значительно отличаться в зависимости от вида обследования. Доза облучения также зависит от года выпуска медицинской аппаратуры, рабочей нагрузки на него.

Важно: современная рентгеноаппаратура дает излучения в десятки раз более низкие, чем предшествующая. Можно сказать так: новейшая цифровая рентгенотехника безопасна для человека

Но все же попытаемся привести усредненные цифры доз, которые может получать пациент

Обратим внимание на различие данных, выдаваемых цифровой и обычной рентгеноаппаратурой:

  • цифровая флюорография: 0,03-0,06 мЗв, (самые современные цифровые аппараты дают излучение в дозе от 0,002 мЗв, что в 10 раз ниже их предшественников);
  • плёночная флюорография: 0,15-0,25 мЗв, (старые флюорографы: 0,6-0,8 мЗв);
  • рентгенография органов грудной полости: 0,15-0,4 мЗв.;
  • дентальная (зубная) цифровая рентгенография: 0,015-0,03 мЗв., обычная: 0,1-0,3 мзВ.

Во всех перечисленных случаях речь идет об одном снимке. Исследования в дополнительных проекциях увеличивают дозу пропорционально кратности их проведения.

Рентгеноскопический метод (предусматривает не фотографирование области тела, а визуальный осмотр рентгенологом на экране монитора) дает значительно меньшее излучение за единицу времени, но суммарная доза может быть выше из-за длительности процедуры. Так, за 15 минут рентгеноскопии органов грудной клетки общая доза полученного облучения может составить от 2 до 3,5 мЗв.

Диагностика желудочно-кишечного тракта – от 2 до 6 мЗв.

Компьютерная томография применяет дозы от 1-2 мЗв до 6-11 мЗв, в зависимости от исследуемых органов. Чем более современным является рентгеноаппарат, тем более низкие он дает дозы.

Отдельно отметим радионуклидные методы диагностики. Одна процедура, основанная на радиофармпрепарате, дает суммарную дозу от 2 до 5 мЗв.

Сравнение эффективных доз радиации, полученных во время наиболее часто используемых в медицине диагностических видов исследований, и доз, ежедневно получаемых человеком из окружающей среды, представлено в таблице.

Процедура Эффективная доза облучения Сопоставимо с природным облучением, полученным за указанный промежуток времени
Рентгенография грудной клетки 0,1 мЗв 10 дней
Флюорография грудной клетки 0,3 мЗв 30 дней
Компьютерная томография органов брюшной полости и таза 10 мЗв 3 года
Компьютерная томография всего тела 10 мЗв 3 года
Внутривенная пиелография 3 мЗв 1 год
Рентгенография желудка и тонкого кишечника 8 мЗв 3 года
Рентгенография толстого кишечника 6 мЗв 2 года
Рентгенография позвоночника 1,5 мЗв 6 месяцев
Рентгенография костей рук или ног 0,001 мЗв менее 1 дня
Компьютерная томография – голова 2 мЗв 8 месяцев
Компьютерная томография – позвоночник 6 мЗв 2 года
Миелография 4 мЗв 16 месяцев
Компьютерная томография – органы грудной клетки 7 мЗв 2 года
Микционная цистоуретрография 5-10лет: 1,6 мЗв Грудной ребенок: 0,8 мЗв 6 месяцев 3 месяца
Компьютерная томография – череп и околоносовые пазухи 0,6 мЗв 2 месяца
Денситометрия костей (определение плотности) 0,001 мЗв менее 1 дня
Галактография 0,7 мЗв 3 месяца
Гистеросальпингография 1 мЗв 4 месяца
Маммография 0,7 мЗв 3 месяца

Важно: Магнитно-резонансная томография не использует рентгеновское облучение. При этом виде исследования на диагностируемую область направляется электромагнитный импульс, возбуждающий атомы водорода тканей, затем измеряется вызывающий их отклик в сформированном магнитном поле с уровнем высокой напряженности

Некоторые люди ошибочно причисляют этот метод к рентгеновским.

Нормативы принятого закона о радиационной безопасности допускают безопасную дозу, полученную человеком за 70 лет жизни до 70 мЗв.

Облучение при рентгене — риски, дозы, техника безопасности, видео:

Лотин Александр Владимирович, врач-рентгенолог

80, всего, сегодня

(51 голос., средний: 4,55 из 5)

Источники радиации вокруг нас

Доза облучения, которую мы получаем от источников ионизирующего излучения:

  • Техногенные аварии, атомные станции, ядерные испытания – около 1 %.
  • Продукты питания и напитки – 4 %.
  • Естественная радиация, излучаемая присутствующими вокруг радионуклидами, – 5 %.
  • Космическая (солнечная) радиация – 5 %.
  • Медицинские обследования – 25 %.
  • Вдыхание радиоактивного газа радона – 60 %.

Таким образом, самую большую дозу облучения мы получаем не в медицинских кабинетах и не в результате давно прошедших техногенных аварий, а в собственных домах и на рабочих местах.

А вы проверяли свою среду индикатором радиоактивности? Уверены, что вашему здоровью ионизирующее излучение не угрожает?

Внутреннее облучение радоном

Этот фактор действует исподтишка, он неощутим, но от этого не менее опасен. Естественный радиоактивный газ радон в больших количествах образуется в толще земли вследствие распада природных радионуклидов. Один из двух его изотопов испускает радиоактивные частицы. Они попадают в организм при дыхании, облучая его изнутри. Больше всего радона скапливается в наших квартирах. Он поступает туда:

  • во время работы газовой плиты;
  • с водой из артезианских источников, поступающей в дом по системе водопровода;
  • с воздухом из лифтов, которые засасывают радон из подвалов помещений подобно большим поршням;
  • через строительные материалы с радиоактивными элементами.

Самое большое количество радона вдыхают владельцы загородных одноэтажных коттеджей и дачники. Газ накапливается в подвалах, откуда через щели перекрытий и зазоры поднимается выше – в жилые помещения дома. Если вы живете в коттедже и пользуетесь водой из артезианской скважины, проверьте датчиком радона, фон в вашей ванной, включив предварительно горячую воду. Нередко превышение концентрации радона фиксируется уже через 5 минут.

Проблема загрязнения помещений радоном осложняется тем, что большая часть территории России находится в зоне холодного климата. Люди стараются держать окна закрытыми, чтобы сберечь тепло, «запирая» при этом радиоактивный газ изнутри. Немногие знают, что снизить его концентрацию до безопасного уровня помогает обычное частое проветривание.

Воздействие радиационного загрязнения на организм человека

Любое излучение, приводящее к образованию в окружающей среде электрических частиц с различными знаками, считается ионизирующим. Рассеянный радиационный фон постоянно сопровождает человека, его создает космическое излучение, влияние солнца, природные источники радионуклидов, другие составляющие биосферы.

Для работы в опасных условиях персонал защищают специальными костюмами, соблюдают нормы безопасности. Облучение организм получает на рабочем месте при физических и химических опытах, проведении дефектоскопии, медицинских исследованиях, геологических изысканиях и др.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector