Мегаомметр — друг инженера-электрика
Содержание:
- Мегаомметр: что такое, область применения и принцип действия
- Поверка
- Микропроцессорные мегаомметры
- Преимущества мегаомметров CEM
- Подготовка к измерению сопротивления изоляции кабеля
- Как замерить сопротивление изоляции мегаомметром ЭСО
- Конструкция простейшего омметра
- На что обращать внимание при работах с мегаометром
- Принцип измерения сопротивления изоляции мегомметром
- Порядок работы
- Как мегаомметром измерить сопротивление кабельных линий до 1 кВ
Мегаомметр: что такое, область применения и принцип действия
Мегаомметр — специальный измеритель, посредством которого выполняются замеры высоких показателей сопротивления. Основное отличие от традиционных омметров представлено тем, что замеры осуществляются на значительном уровне напряжения, самостоятельно генерируемым изоляционными измерителями.
Функционирование измерителей изоляционного сопротивления объясняется законом Ома, действующем на участке электроцепи: I=U/R. Основные составные части, установленные внутри корпуса, представлены источником напряжения, имеющим постоянную и откалиброванную величину, а также токовым измерителем и клеммными выходами.
На клеммах фиксируются при помощи обычных зажимов-«крокодилов» соединительные провода, а присутствующим амперметром замеряются токовые величины электроцепи. Для некоторых моделей характерно наличие шкалы с двумя видами значений или цифрами, отображающимися на экране.
Принип работы мегаомметра
Мегаомметры используются в замерах изоляционного сопротивления, а также с целью определения коэффициента изоляционной абсорбции электрического оборудования, которое не пребывает в условиях рабочего напряжения. Измерители изоляционного сопротивления классифицируются в зависимости от типовых особенностей схемы и способа индикации.
Цифровые модели являются более дешёвыми приспособлениями, а аналоговые приборы имеют высокую стоимость, но отличаются высокими показателями точности осуществляемых измерений. Основная область применения в настоящее время представлена производственными и распределительными системами электрической энергии, системами контроля эксплуатации электрического оборудования в промышленности, лабораториях и в полевых условиях. В быту такие приборы не слишком востребованы.
Поверка
осуществляется в соответствии с ГОСТ 8.409-81 «Государственная система обеспечения единства измерений. Омметры. Методы и средства поверки».
Основные средства поверки:
— магазины сопротивления Р33, диапазон воспроизведения сопротивлений от 0 до 10 кОм, пределы допускаемой погрешности воспроизведения сопротивления ± (0,1 — 5) %;
— магазины сопротивления Р4002, диапазон воспроизведения сопротивлений от 10 кОм до 10 МОм, кл. т. 0,05;
— мера-имитатор Р40116, диапазон воспроизведения сопротивлений от 10 кОм до 10 ГОм, пределы допускаемой погрешности воспроизведения сопротивления ± (0,05 — 0,1) %.
Микропроцессорные мегаомметры
Следующим этапом развития мегаомметров стали микропроцессорные приборы. Все, что необходимо для работы с ними – дисплей и кнопки, которыми задается рабочее напряжение. Остальное прибор делает сам, выдавая в итоге на дисплей конечный результат, и даже – реальную величину напряжения, которую удалось выдать на измерительный выход. При снижении значения изоляции контролируемого объекта прибор не может выдать номинального напряжения на выходе. В некоторых случаях знать это нужно.
Для измерений коэффициента абсорбции в некоторых моделях приборов не только выдается визуальный и звуковой сигнал через 15 и 60 секунд. Они фиксируют сопротивление изоляции в это время и самостоятельно подсчитывают коэффициент .
Комбинированный прибор MIC 3
Микропроцессорные приборы компактнее своих предшественников. За счет этого появилась возможность совмещать в одном корпусе устройства различного назначения. для проверки сопротивления заземления, УЗО, петли фаза-ноль. Это удобно при выполнении комплексных измерений на объектах: работникам электролабораторий не нужно таскать с собой несколько приборов, достаточно одного.
Оцените качество статьи
Нам важно ваше мнение:
Преимущества мегаомметров CEM
- Несколько предустановленных уровней тестового напряжения позволяют использовать мегаомметр для работы с объектами различного типа.
- Защита от перегрузок обеспечивает безопасность использования прибора. Дополнительно некоторые старшие модели оснащены функцией блокировки, защищающей от непреднамеренного включения прибора.
- Двустрочный ЖК дисплей, на котором одновременно отображаются значения сопротивления и напряжения, что повышает информативность измерений.
При выборе мегаомметра в первую очередь стоит исходить из типа тестируемого объекта и от его характеристик. Обширный модельный ряд мегаомметров CEM позволяет подобрать оптимальный прибор для решения практически любых измерительных задач.
Для контроля состояния проводки в однофазных сетях 220 В отлично подойдет базовая модель мегаомметров CEM – DT-5301. Прибор отличается сравнительно невысокой стоимостью, и при этом помимо измерения значения сопротивления позволяет определять силу тока короткого замыкания. Эта функция помогает правильно подобрать устройства защиты электросети: предохранители, УЗО и так далее.
Еще одной моделью бюджетной категории является мегаомметр CEM DT-5503. Отличительной его особенностью является полностью аналоговое исполнение. Прибор оборудован классическим стрелочным индикатором и позволяет измерять сопротивления номиналом до 400 МОм.
Более продвинутые модели мегаомметров CEM серии 5500/5505 оснащены функцией звуковых оповещений при достижении определенных заданных значений сопротивления. Это значительно упрощает работы по допусковому контролю. Для удобства анализа полученных данных данные приборы оснащены функцией автоматического определения пиковых значений min/max.
Старшие модификации мегаомметров CEM позволяют производить всесторонний контроль работы электросетей и оборудования. Например, DT-9985, помимо измерителя сопротивления, может выполнять функции True RMS мультиметра и измерять такие параметры как:
- Сила тока и напряжение постоянного и переменного тока.
- Частота.
- Проводимость.
- Температура и так далее.
Отдельно стоит отметить специализированную модель мегаомметра CEM DT-6605. Он предназначен специально для работы в высоковольтных сетях. Прибор изготовлен в соответствии с требованиями наивысшей категории (IV) электробезопасности. С его помощью вы сможете измерять сопротивления больших номиналов с тестовым напряжением до 5 киловольт. Кроме того прибор позволяет определять напряжение постоянного и переменного тока и выполнять проверку целостности цепей. При этом на дисплее прибора отображаются значения по трем измеряемым параметрам одновременно.
Вне зависимости от модификации мегаомметры CEM имеют интуитивно-понятный интерфейс, что позволяет быстро освоиться в работе прибора даже без предварительной подготовки. Значения измеряемых параметров отображаются на ярком жидкокристаллическом дисплее прибора. Для удобства работы в условиях недостаточной освещенности предусмотрена подсветка экрана. Управление мегаомметрами CEM осуществляется при помощи нескольких функциональных клавиш и поворотного селектора.
Выбрать и купить мегаомметр CEM в Москве вы можете в магазине или на сайте РУСГЕОКОМ. Мы также осуществляем доставку в другие регионы.
Подготовка к измерению сопротивления изоляции кабеля
Замер сопротивления изоляции должен выполняться в соответствии с техническими и организационными мероприятиями. Прозвонить проводник можно только после отключения кабельной линии со всех сторон. В противном случае будет выполнена проверка сопротивления совместно с подключенным электрическим оборудованием.
Измерения должны осуществляться с учетом температуры окружающего воздуха. Она влияет на минимально допустимые показатели изоляционного слоя.
Перед проверкой следует отключить кабельную линию от источника тока и нагрузки
Перед проведением замера следует убедиться в отсутствии напряжения, используя указатель на соответствующий уровень напряжения. Затем закоротить проводник или установить заземление. Это требуется для снятия остаточного или наведенного потенциала. Далее вывешиваются плакаты:
- запрещающие — «Не включать, работают люди»;
- указательные — «Заземлено».
Как замерить сопротивление изоляции мегаомметром ЭСО
Первым делом необходимо правильно подключить измерительные провода к самому устройству. На данном этапе могут возникнуть вопросы. Это происходит из за того, что на панели подключения есть четыре отверстия (хотя встречается и три). Рассмотрим их подробнее слева-направо:
- “Минус” – сюда одинарный конец измерительного провода
- “Rx” – сюда второй конец двойного провода
- Данное отверстие в описываемой модели мной не опознано. Однако в ЭСО210/2 сюда перебрасывается провод с Rx при измерениях на пределе 0-5 МОм (отверстие подписано 0,1Rx).
- “Э” – экран; сюда вставляется штырь двойного провода. А нужен он для устранения влияния тока утечки на измерения. Используется при измерении между фазами.
Подача напряжения осуществляется при нажатии кнопки “сеть”. Провод питания подключается в нижней части прибора. Напряжение питания составляет 220В. Берем от розетки или, если она далеко, от удлинителя. Порой кроме компактного мегаомметра надо брать с собой на объект и удлинитель. Хотя, можно и одолжить у местных.
Перед началом измерений надо проверить исправность измерительных проводов, необходимо проверить их целостность. Для этого надо подключить провода и далее:
- При соединенных проводах сопротивление изоляции должно быть равно нулю
- При разведенных проводах значение Rx должно быть максимально возможным (говорим, бесконечность – сопротивление воздуха бесконечно, проводимость равна нулю)
- Если бесконечность при замкнутых, значит провод обломан и надо его заменить
- Если ноль при разведенных, значит либо они касаются, либо внутри прибора пробой или другая неисправность (не встречал такую ситуацию)
Лично я испытывал следующее оборудование мегаомметром: кабель (жилы, оболочка), турбогенератор (статор, ротор, подстуловая, патрубков), трансформатор, шины, электродвигатель, релейные цепи, трансформаторы тока и напряжения.
Таблица пределов измерения мегаомметров ЭСО
Разные модели мегаомметров ЭСО отличаются:
- регулируемыми пределами измерений (разные шкалы для разных величин измеряемого сопротивления изоляции )
- подаваемым напряжением постоянного тока (100, 250, 500, 1000, 2500 В)
- а также способом подачи напряжения (либо просто нажатие кнопки, либо вращение ручки генератора со скоростью 120-144 об/мин, о чем говорит наличие буквы Г в названии модели, ну и ручки собственно).
Характеристики мегаомметров ЭСО210
Основными элементами прибора являются: генератор или трансформатор, преобразователь и электронный измеритель. Электронный измеритель в моделях ЭСО210/1(Г) и ЭСО210/3(Г) выполнен на двух логарифмических усилителях. А в моделях ЭСО210/2(Г) – на двух логарифмических усилителях и повторителе напряжения на операционном усилителе – но эта информация, скорее всего, мало кому пригодится.
Также стоит отметить, что при использовании прибора рекомендуется использовать прерывистый характер работы – одну минуту измерение, две минуты перерыв.
Класс точности прибора 2,5, относительная погрешность 15% от измерененного сопротивления изоляции. То есть намерили 100МОм, а на самом деле это будет сто плюс минус пятнадцать мегаомм. Но и это не точно, так как существуют и другие влияющие факторы – это подробно описано в руководстве мегаомметра по экспуатации…
Как не запутаться в шкалах стрелочного мегаомметра ЭСО210
При работе с данным прибором чаще всего путаются какие концы куда вставлять, а также не сразу ориентируются на какую шкалу смотреть. Но с опытом глаз наметывается и трудностей не возникает.
У первой шкалы нуль справа, у второй и второй умножить на десять нули слева. Не путайте никогда. Нижняя черная шкала, как легко догадаться используется при измерении напряжения, и судя по надписи – как постоянного, так и переменного.
Возможно неопытного юнца испугает логарифмическая шкала, но бояться не стоит. Главное не торопиться и перепроверить несколько раз перед записью в протокол.
Например, первая шкала идет справа налево
… 0,1-0,2-0,3-0,4-0,5-0,6-0,7-0,8-0,9 …
1
… 2-3-4-5-6-7-8-9 …
10
… 20-30-40 …
50
К этому привыкаешь) На второй шкале максимум десять в четвертой – это 10 000 МОм или же 10 ГОм.
50
… 60-70-80-90 …
100
… 200-300-400-500-600-700-800-900 …
1000 (1к)
… 2к-3к-4к-5к-6к-7к-8к-9к …
10000 (10к)
А на “второй умножить на десять” – 100 000 МОм или 100 ГОм.
Некоторые пишут, но никогда не говорят, не ЭСО, а ЭС0. Расшифровки на просторах интернета я не нашел, но кажется мне, что правильно писать букву о, а не ноль. Если вдруг знаете аргументированный ответ как правильно, отпишитесь на почту.
Последние статьи
Самое популярное
Конструкция простейшего омметра
Омметр — прибор для измерения активного сопротивления. Самый простой вариант — аналоговый или стрелочный. Действие основано на способности протекающего по проводнику тока создавать магнитное поле, значительно усиливающееся при сматывании провода в катушку.
Внутри аналогового омметра имеются такие компоненты:
- подвижная катушка на пружинке с присоединенной к ней стрелкой;
- постоянный магнит;
- блок ограничивающих резисторов R (нужный выбирается переключателем);
- источник питания — батарейка или аккумулятор;
- щупы с разъемами для подключения к прибору.
При подсоединении щупов к выводам проверяемого элемента с сопротивлением RX, цепь замыкается и через катушку течет ток.
Его величина зависит от RX, а ограничивающий резистор R исключает возможность короткого замыкания. От силы тока зависит индукция магнитного поля, создаваемого катушкой, и, соответственно, сила ее взаимодействия с постоянным магнитом.
Чем выше эта сила, тем больше смещается катушка, растягивая пружину, и тем дальше отклонится прикрепленная к ней стрелка. Подключая разные ограничивающие резисторы, меняют чувствительность прибора — от нее зависит диапазон измерений.
На что обращать внимание при работах с мегаометром
Повышенное напряжение прибора
Выходной мощности генератора мегаомметра вполне достаточно для того, чтобы не только определить появление микротрещин в слое изоляции, но и получить серьезную электрическую травму. По этой причине правила безопасности разрешают пользоваться прибором только обученному и хорошо подготовленному персоналу, допущенному к работам в электроустановках под напряжением. А это минимум третья группа по ТБ. Повышенное напряжение прибора во время замера присутствует на испытуемой схеме, соединительных проводах и клеммах. Для защиты от него применяются специальные щупы, установленные на измерительные провода с усиленной поверхностью изоляции. На концах щупов предохранительными кольцами выделена запретная зона. К ней нельзя прикасаться открытыми частями тела. Иначе можно попасть под действие напряжения. Для манипуляций с измерительными щупами руками берутся за поверхность рабочей зоны. Во время измерений для подключения к схеме используют хорошо заизолированные зажимы типа «крокодил». Применять другие провода и щупы запрещено.
Во время проведения замера на всем испытуемом участке не должно быть людей. Особенно это актуально при замерах сопротивления изоляции длинномерных кабелей, протяженность которых может составить несколько километров.
Наведенное напряжение
Проходящая по проводам линий электропередач энергия обладает большим магнитным полем, которое, изменяясь по синусоидальному закону, наводит во всех металлических проводниках вторичную ЭДС и ток. Его величина на протяженных изделиях может достигать больших величин.
Этот фактор необходимо учитывать по двум причинам, связанным с:
2. безопасностью работающего персонала.
Первая причина заключается в том, что при сборке схемы для замера сопротивления изоляции через измерительный орган мегаомметра потечет ток неизвестной величины и направления, вызванный наводкой электрической энергии. Его значение добавится к показанию прибора от калиброванного напряжения генератора. В итоге две неизвестных величины тока суммируются произвольным образом и создают неразрешимую метрологическую задачу. Измерение сопротивлений электрических цепей, находящихся под любым напряжением, а не только под наведенным, поэтому вообще лишено смысла.
Вторая причина объясняется тем, что работы под наведенным напряжением могут привести к получению электрических травм и требуют строгого соблюдения правил безопасности.
Остаточный заряд
Когда генератор прибора выдает напряжение в измеряемую сеть, то между шиной электрооборудования или проводом линии и контуром земли создается разность потенциалов и образуется емкость, которая получает заряд. После разрыва цепи мегаомметра за счет отключения измерительного провода часть этого потенциала сохраняется: шина или провод обладают емкостным зарядом. Стоит только человеку прикоснуться к этому участку, как он получает электрическую травму от тока разряда через его тело. По этой причине необходимо принимать дополнительные меры безопасности и постоянно пользоваться переносным заземлением с изолированной рукояткой для безопасного снятия емкостного напряжения. Перед подключением мегаомметра к схеме, изоляция которой будет замеряться, всегда необходимо поверять отсутствие на ней напряжения или остаточного заряда. Делают это испытанным индикатором или поверенным вольтметром соответствующих номиналов. После выполнения каждого замера емкостной заряд снимается переносным заземлением с использованием изолирующей штанги и других дополнительных защитных средств.
Обычно мегаомметром необходимо выполнять много замеров. Например, чтобы сделать вывод о качестве изоляции контрольного десятижильного кабеля требуется проверить ее относительно земли и каждой жилы и между всеми жилами поочередно. При каждом замере необходимо пользоваться переносным заземлением. Для быстрой и безопасной работы один конец заземляющего проводника первоначально присоединяют к контуру заземления и оставляют в таком положении до полного завершения работ. Второй конец провода прикрепляют к изоляционной штанге и с ее помощью каждый раз накладывают заземление для снятия остаточного заряда.
Принцип измерения сопротивления изоляции мегомметром
Принцип измерения величины сопротивления изоляции сам по себе несложен. Используется закон Ома – замеряется сила протекающего между двумя щупами тока при известном поданном на них напряжении. Отношение величины напряжения к силе тока как раз и даст искомый результат. Этот принцип применяется практически во всех контрольно-измерительных приборах, предназначенных для измерения сопротивлений.
R = U/ I
Но для того чтобы вызвать и «засечь» электрический ток в цепи при очень больших показателях сопротивления (а у изоляции по умолчанию они должны быть такими), требуется подавать и весьма внушительное напряжение. Именно это и реализовано в мегомметрах.
Независимо от типа и модели прибора, он в обязательном порядке имеет:
- Высоковольтный источник постоянного напряжения.
- Измерительный блок, оценивающий силу проходящего по цепи электрического тока.
- Устройство индикации показаний – стрелочное со шкалами, или в виде цифрового дисплея с показом абсолютных значений.
- Набор измерительных проводов со щупами, посредством которых высокое напряжение передается на тестируемый объект.
На сегодняшний день существует два основных типа подобных приборов.
Еще не столь давно безраздельно господствовали мегомметры со стрелочной шкалой и встроенным индуктором – динамомашиной. Вращением специальной рукоятки генерируется высокое напряжение, которое после необходимого преобразования подаётся на щупы. Частота вращения – примерно 120÷140 оборотов в минуту (2 оборота в секунду). О выходе на установленное калиброванное высокое напряжение, как правило, извещает загоревшийся индикатор, расположенный на передней панели.
Подобные мегомметры без сколь-нибудь принципиальных изменений выпускаются уже много десятков лет. И, надо сказать, не торопятся «уходить со сцены».
Подобные модели довольно просты в устройстве, несложны в управлении. Как правило, имеют весьма солидные габариты и вес. Но зато – они полностью автономны, то есть не требуют ни элементов питания, ни подключения к сети
Идеальное решение для любых «полевых» условий, что бывает особенно важно во время ведения строительства
Как бы то ни было, мегомметры такого типа все еще выпускаются промышленностью, находят спрос. А многие мастера-электрики и вовсе предпочитают исключительно их, несмотря на появление более компактных и «навороченных» приборов.
Другой тип мегомметров – это электронные приборы, которые обычно намного компактнее и легче. Высокое напряжение у них вырабатывается в специальном электронном преобразователе от встроенного аккумулятора, сменных источников питания или от блока питания, требующего подключения к сети. Многие модели позволяют выбрать любой из этих вариантов питания. Но в любом случае прослеживается зависимость от наличия источника – полной автономности в работе нет.
Многие современные мегомметры внешне напоминают привычные мультитестеры. А нередко и способны выполнять ряд функций, им присущих.
Электронные приборы довольно компактны, и некоторые из них внешне даже вполне можно спутать с мультиметрами. Кстати, во многих моделях это сходство не ограничивается лишь внешним. Действительно, в них заложены некоторые функции «общего плана». Обычно это измерение постоянного и переменного напряжения, прозвон цепей и определение сопротивления в нижнем диапазоне значений, то есть от нуля до мегаома. Могут иметься и другие функции, в том числе и узкоспециализированного предназначения.
Проведение измерений – до предела упрощено. После выставления всех необходимых параметров и коммутации проводов мегомметра к проверяемому объекту, остается только нажать кнопку «TEST».
Индикация полученных показаний замеров выводится на цифровой дисплей, что, безусловно, значительно упрощает восприятие информации. Спустя несколько секунд после пуска, на дисплее появится измеренное значение сопротивления, с указанием соответствующей величины (МОм или ГОм, МΩ или GΩ).
Цифровые дисплеи намного удобнее для считывания измеренных значений сопротивления
Удобство в том, что и замеры, и считывание результатов никак не зависит от пространственного положения прибора. У стрелочных с этим сложнее – для корректных замеров требуется исключительно горизонтальное расположение.
Итак, независимо от типа мегомметра, принцип его работы един. На тестируемом объекте закрепляются щупы измерительных проводов, подключенных к прибору. Затем на них подается калиброванное высокое напряжение. Измеренное значение силы тока позволяет судить о сопротивлении между щупами. Значение выводится на устройство индикации.
Порядок работы
6.1 Убедиться в отсутствии напряжения на объекте. Подключить объект к гнездам rх мегомметра согласно рисунка. Для уменьшения влияния токов утечки при помощи проводника Баб.640.385 подсоединить к гнезду Э экран (кожух) объекта. При измерении сопротивления изоляции объекта относительно земли экран объекта не подсоединять к гнезду Э.
6.2 Установить переключатель измерительных напряжений в нужное положение, а переключатель диапазонов в положение I или II.
6.3 Для проведения измерений вращать ручку генератора со скоростью (120 — 144) об/мин. При вращении ручки генератора светится индикатор ВН, что свидетельствует о наличии измерительного напряжения.
6.4 После установления стрелочного указателя произвести отсчет значения измеряемого сопротивления. Если стрелочный указатель находится левее отметки «5» для ЭС0202/1-Г или «50» для ЭС0202/2-Г переключите переключатель диапазонов на другой диапазон.
6.5 Для уменьшения времени установления показаний по шкале II необходимо перед измерением закоротить гнезда гх и вращать ручку генератора в течение (3 — 5) с.
6.6 После окончания измерений установить переключатели мегаомметра в среднее положение.
6.7 Методика и примеры расчета погрешности мегаомметра в рабочих условиях применения приведены в приложении Г.
Как мегаомметром измерить сопротивление кабельных линий до 1 кВ
Мегаомметры используются для опредения сопротивления кабелей до и выше 1 кВ. Одножильные провода проверить при помощи такого прибора довольно легко – в сравнении с многожильными. Чем их больше, тем более масштабной будет исследование. Это обусловлено тем, что все линии надо проверять в отдельности от остальных.
При выборе контрольного напряжения следует основываться на эксплуатационном напряжении. Если кабель функционирует при 380 или же 220 В, тестовые показатели необходимо выставить на показатель 1000 В.
Когда необходимо проверить одножильный кабель, один щуп нужно прикрепить к жиле, оставшийся – на экран. В тех случаях, когда экран отсутствует, второй щуп стоит прикрепить к «земле». После этого следует подать напряжение от прибора.
Если в итоге будет получено не меньше чем 500 кОм, можно делать вывод о том, что линия исправна. В ситуациях, когда сопротивление оказывается меньшим, проводник нужно перестать использовать. Подобный результат тестирование говорит о том, что изоляция кабеля повреждена.
Если происходит проверка линии с несколькими жилами, их нужно исследовать отдельно друг от друга. Во время этого остальные кабели могут быть связаны между собой жгутом. В тех ситуациях, когда требуется проверка пробоя на «землю», к незадействованным жилам прикрепляется линия заземления. Когда берется броня или экран, они тоже должны быть подкреплены к этому пучку. В нем следует обеспечить высокую плотность соприкосновения кабелей.
Отдельно стоит разобраться исследовании сопротивления изоляционного слоя в розетках. Для этого предварительно из них нужно отключить приборы. Дополнительно нужно убрать питание посредством распределительного щитка.
Один щуп должен быть подсоединен на «землю», другой – на фазу. Напряжение на устройстве ставится на показатель в 1000 В. Далее проводится проверка. Если будет получен результат боле 500 кОм (0,5 мОм), то изоляция полностью исправна. Таким же образом нужно в итоге проверить все фазы.