Резервуарный гидротаранный электрогенератор
Содержание:
- Плюсы и минусы
- Резервуарный гидротаранный электрогенератор:
- Гидроудар или как сделать бесплатный насос, используя энергию воды
- Гидротаран — насос без подвода электричества
- Как повысить эффективность установки
- Принцип действия
- Расчёт
- Принцип действия гидротарана:
- Что потребуется для изготовления гидротарана своими руками
- Как и почему работает гидротаран
- История
- Гидротаранный насос своими руками
- Сборка гидротарана: некоторые нюансы
- Водяной насос без питания своими руками
- Виды
- Фидер и гидроклапан
Плюсы и минусы
Преимущества этого агрегата очевидны:
- Для его функционирования не требуются мускульные усилия. В конструкции нет двигателя, работающего на электричестве или бензине. А значит, отсутствуют дополнительные материальные затраты.
- Простота применения. Насос-гидротаран достаточно установить один раз, и он будет исправно работать без особого присмотра и обслуживания.
- Минимальные условия для приведения в действие такого насоса. Достаточен перепад уровней в несколько десятков сантиметров и небольшой расход воды. Причем она может накапливаться до совершения рабочего цикла. Способностью работать в таких условиях не могут похвастаться другие гидротехнические устройства, такие как турбины, водяные колеса.
- Длительная служба. Ее обеспечивает незамысловатая конструкция с минимумом деталей. Устройство может эксплуатироваться до 20 лет или пока не пересохнет питающий водоток.
- Несложная сборка. Смонтировать конструкцию можно, не обладая специальными навыками. Единственное, составные элементы должны быть высокопрочными.
Но, наряду с полезными качествами, насос этого типа имеет и существенные недостатки. Из-за них предпочтение чаще отдается электрическим и бензиновым аналогам. Минусов в работе гидротарана несколько.
Во-первых, поток, проходящий через нагнетательную трубу, должен иметь хорошую скорость, как минимум метр в секунду. Поэтому обязателен достаточный перепад высот. Значит, с помощью классического гидротарана не получится забирать воду из пруда, озера или реки с очень спокойным течением из-за незначительного уклона местности.
Установленный гидротаран в реке с уклоном
Во-вторых, за время гидравлического удара вода, находящаяся за отбойным клапаном, должна успеть уйти. Нужно, чтобы после открытия «заслонки» ничто не мешало новой порции жидкости как следует разогнаться. Только при высокой скорости потока клапан снова захлопнется и произойдет очередной гидравлический удар.
Если вода останется, разгон воды будет осуществляться гораздо дольше. Это приводит к потере жидкости, которая могла бы оказаться полезной, и снижению производительности установки
Важно, чтобы отбойный клапан располагался на достаточной высоте по сравнению с местом, куда после него стекает вода
В-третьих, устройство гидротарана позволяет добывать воду исключительно за счет энергии потока, но в то же время наблюдаются значительные потери жидкости. Ее гораздо больше уходит, чем поднимается для использования по назначению.
В итоге количество получаемой жидкости может оказаться ничтожным. Для более эффективной работы агрегата необходимо правильно рассчитать длину и диаметр нагнетательной трубы, сечения клапанов и другие параметры. Требуется индивидуальная настройка под условия, в которых будет находиться установка.
В-четвёртых, воздух из колпака может растворяться в воде, нагнетаемой вследствие гидравлического удара. Причиной этому является повышенное давление. Необходима подкачка воздуха, которую технически сложно осуществить. Одно из решений – применение в роли такого колпака мембранного гидроаккумулятора.
В-пятых, принцип гидротарана действует только при больших размерах такого оборудования. Протяженность нагнетательной трубы в 10 и больше метров нужна для того, чтобы обеспечить мощный гидроудар после воздействия на отбойный клапан большой массы воды.
Линейные размеры насоса можно уменьшить, применив спиралевидную трубу, но вес не изменится. Нужно учитывать, что чем больше установка, тем толще стенки ее элементов, а сами детали массивней. Это требуется для обеспечения необходимой прочности конструкции.
Резервуарный гидротаранный электрогенератор:
Резервуарный гидротаранный электрогенератор представляет собой герметичный резервуар с прочным металлическим корпусом цилиндрической формы, в котором размещены «подводный гидротаран» и генератор электрического тока в виде встроенного специального преобразователя электрической энергии.
Подводный гидротаран для обеспечения своей работы не требует какого-либо ископаемого топлива или какой-либо дополнительной подведенной энергии.
Резервуарный гидротаранный электрогенератор работает в вертикальном положении с допустимым отклонением от вертикальной оси, не превышающем 50о.
Резервуарный гидротаранный электрогенератор при использовании специального преобразователя кинетической энергии выходной струи воды в электрическую энергию не содержит каких-либо ломающихся вращающихся и возвратно-поступающих деталей. В связи с этим резервуарный гидротаранный электрогенератор может работать и генерировать экологически чистую электроэнергию в течение не менее 10 лет. Работоспособность резервуарного гидротаранного электрогенератора не зависит от времени суток, климатических и погодных условий, наличия солнца и ветра.
Зависимость выходной мощности генерируемого электрического тока N от диаметра резервуарного гидротаранного электрогенератора D приведена ниже.
S=0,785D2 (m2)
L=5D (m)
N/S = 39800 (KW/m2)
Резервуарный гидротаранный электрогенератор диаметром 200 мм будет иметь мощность генерируемой электроэнергии до 1250 КВт при выходном напряжении 200 – 50 000 вольт, массе не более 230 кг и длине 0,8 м. Резервуарный гидротаранный электрогенератор диаметром 40 мм будет иметь мощность до 50 КВт при массе не более 1,8 кг и длине 200 мм.
Гидроудар или как сделать бесплатный насос, используя энергию воды
В этой статье мы расскажем о том, как создать насос, не требующий топлива или электричества для работы. Статья содержит описание принципа работы устройства, основные элементы конструкции, а также видео с процессом сборки базовой модели таранного насоса. Вы узнаете, как собрать его самостоятельно.
Гидравлика — наука такая же древняя, как и сама вода. Законы гидравлики действуют абсолютно для любой жидкости, и мы рассмотрим, как использовать эти законы в организации насоса или помпы с применением кинетической энергии.
Прототип насоса, основанного на действии гидроудара, был создан во Франции ещё в 17-ом веке изобретателем воздушного шара Монгольфье. Практически одновременно с ним идентичную конструкцию запатентовали изобретатели в Англии, США и Германии. В России он получил звучное народное название «гидротаран».
Гидротаран — насос без подвода электричества
В качестве независимых наблюдателей на всех испытаниях присутствовали представители трех авторитетных в Испании компаний. В результате, был получен устойчивый самоподдерживающийся режим, а обработка осциллограммы избыточного давления в колпаке дала осредненные результаты, представленные на Рис. При этом диаграмма получаемого электрического напряжения и силы тока не носила ступенчатый характер.
Таким образом, новое водоподъемное устройство, представляющее, по сути, новый преобразователь гравитационной энергии, способно простым способом вырабатывать любое промышленное количество экологически чистой и мощной электроэнергии, и потенциально способно заменить по мощности существующие тепловые и атомные электростанции.
В настоящее время широкое внедрение этого изобретения в энергетику в техническом плане не представляет проблем.
Его внешний вид в сравнительном масштабе представлен на Рис. Схема размещения такого одиночного модуля в подземном резервуаре представлена на Рис.
Выходное напряжение — 6,3 кВ. Частота — 50 Гц. Длина — 8,1 м. Диаметр опорного основания 2 м
Важно, что удельная себестоимость такого источника электроэнергии получается минимальной из всех известных энергогенераторов
Общие затраты на строительство электростанции с таким модулем не превысят стоимости строительства промышленного ветрогенератора. В заключение следует отметить, что результаты теоретических и экспериментальных исследований позволили авторам этой статьи и группе специалистов, участвовавших в разработке этого изобретения сделать несколько заявок на Европейские патенты и получить на него в году.
Испытания насоса
Будучи полностью погруженный в воду на достаточную глубину, он определенным образом трансформирует глубинное статическое давление воды в пульсирующую по времени струю воды с более высоким, чем на данной глубине напором. В водозаборное отверстие преобразователя вода под глубинным давлением сама втекает, а с другой стороны из выходного отверстия с еще большим напором вытекает.
Данный преобразователь можно использовать, как глубинный насос, как пульсирующий водяной реактивный движитель и как источник электрического тока, если к выходному отверстию присоединить гидротурбину с электрогенератором.
При этом его особенностью является то, что для работы не требуется ни грамма какого-либо топлива или какой-нибудь подведенной дополнительной энергии. Изобретение патентовано и опубликовано в различных странах. Изобретение сделано без участия каких-либо государственных организаций и институтов, и принадлежит только указанным авторам.
Будучи один раз включенным, он с постоянными параметрами может вне зависимости от времени суток и климатических условий работать без остановки непрерывно много лет. Это позволяет при достаточно большой площади водозаборного отверстия, либо при одновременном использовании его в большом количестве в виде пакета, получить практически любую требуемую выходную мощность электрического тока.
При определенных режимах работы данный преобразователь способен без потерь энергии на производство электроэнергии, нагревать проходящую через него воду. Таким образом, он может эффективно использоваться для отопления помещений.
Подводный гидротаран может быть использован в конструкциях средств транспортирования жидкости, основанных на использовании гидравлического удара. Подающая труба с ударным клапаном сообщена с нагнетательной трубой посредством нагнетательного клапана и с баком возвратной воды посредством дополнительного нагнетательного клапана. Ударный клапан выполнен в виде двух дисков с совпадающими водопропускными отверстиями, соосно установленных на полом штоке, имеющем щелевидное направляющее отверстие, который размещен в подающей трубе с возможностью возвратно-поступательного движения.
Теоретические расчеты подтвердились:.
Как повысить эффективность установки
Производительность устройства напрямую зависит от силы возникающего гидроудара. А она, в свою очередь, определяется рядом факторов. В частности, тем, какие использованы трубы. Их стенки не должны быть эластичными. Иначе объем трубы в месте резкой остановки воды увеличивается, и сила гидроудара снижается.
Если полость, по которой движется жидкость, заполнена воздухом и он не успевает во время выйти, то также не стоит рассчитывать на максимально мощный гидроудар. Задержавшийся воздух выступает в роли амортизатора.
Давление в нем постепенно увеличивается, создается сопротивление движущейся воде, и та замедляет свой ход. Этот принцип оказывается полезным, если нужно защитить от повреждения обычный трубопровод. Но в случае с гидротараном воздух оказывается ненужным препятствием.
И еще два фактора, сдерживающих силу гидравлического удара, – недостаточная скорость движения потока и плавное его перекрытие. Стоит помнить, что при одинаковом расходе воды скорость уменьшается при увеличении диаметра трубы, и наоборот. Как перекрывается движение жидкости, зависит от работы клапана.
Таким образом, мощнейший гидроудар получается при использовании наиболее жесткой и прочной трубы, сильнейшем разгоне потока перед остановкой и резком его перекрытии клапаном. При соблюдении указанных условий гидротаран будет выполнять свое предназначение и обеспечит объект максимально возможным количеством воды.
Принцип действия
Этот механизм действует при помощи запаса механической работы, содержащегося в воде, текущей по трубе. В оригинальном приборе Монгольфье, устроенном в Сен-Клу, близ Парижа, вода притекает по длинной трубе AB{\displaystyle AB} (рис. 1) из невысоко расположенного пруда и может свободно вытекать через край K{\displaystyle K}, пока клапан V{\displaystyle V} опущен.
Рис. 1. Гидравлический таран Монгольфье
С того момента, как вода, наполняющая AB{\displaystyle AB}, получила возможность течь, работа силы тяжести пойдет на увеличение её скорости до некоторой наибольшей величины, обусловленной высотой h{\displaystyle h} уровня воды в пруде над отверстием K{\displaystyle K}, размерами и свойством (см. ниже) трубы AB{\displaystyle AB}. Вместе с тем будет возрастать и гидравлическое давление воды на нижнюю поверхность клапана V{\displaystyle V}, вес которого так подобран, чтобы он поднялся и закрыл выходное отверстие, как только скорость воды в трубе достигнет своей наибольшей величины. В этот момент гидростатическое давление воды на внутреннюю поверхность трубы AB{\displaystyle AB} и её продолжения CS{\displaystyle CS} станет возрастать, так как движение воды будет замедляться, пока весь запас работы, заключенный в её массе в виде живой силы, не истратится на растяжение этих стенок, на сжатие самой воды и на внутреннее трение. Но часть этих стенок сделана подвижною: в колоколообразном придатке S{\displaystyle S} замкнуто водой некоторое количество воздуха и помещены клапаны W{\displaystyle W}, открывающиеся в колокол R{\displaystyle R}, тоже содержащий воздух над водой и снабженный подъемной трубой DE{\displaystyle DE}. Поэтому после закрытия клапана V{\displaystyle V} живая сила воды начинает сжимать воздух в S{\displaystyle S}, пока не поднимутся клапаны W{\displaystyle W}; тогда вода станет входить в R{\displaystyle R}, частью сжимать находящийся в нём воздух, а частью подниматься по трубе DE{\displaystyle DE} на высоту H{\displaystyle H}. На все это скоро истратится вся живая сила воды, давление в R{\displaystyle R} перевесит давление в S{\displaystyle S}, клапаны W{\displaystyle W} закроются, V{\displaystyle V} откроется, и весь процесс начнется снова. Возрастание давления будет тем больше, чем быстрее захлопывается клапан V{\displaystyle V} и чем неподатливее стенки сосуда, заключающего воду в движении. Такого «гидравлического удара» тщательно стараются избегать при устройстве водопроводов, чтобы не лопались трубы, поэтому Монгольфье и устроил колпак S{\displaystyle S}; упругая податливость воздуха, в нём заключенного, ослабляет силу удара; воздух же в колпаке R{\displaystyle R} служит регулятором для трубы DE{\displaystyle DE} и поддерживает в ней движение воды в тот период, когда клапаны W закрыты. При повышенном давлении в воде растворяется больше воздуха, чем при атмосферном давлении, поэтому количество воздуха в S{\displaystyle S} и R{\displaystyle R} уменьшалось бы во время непрерывной работы. Чтобы пополнять эту убыль, служит клапан H{\displaystyle H}, отворяющийся внутрь: как только клапаны W{\displaystyle W} захлопнутся, упругость воздуха в S{\displaystyle S} заставит воду в CBA{\displaystyle CBA} отхлынуть назад; с приобретенною скоростью она перейдет своё положение равновесия и произведет на очень короткое время под S{\displaystyle S} давление, меньшее атмосферного. В этот момент через H{\displaystyle H} входит немного воздуха.
В продаже существуют готовые типы таран, английские фирмы Дулас, французские Декер и др. При испытании в Парижской консерватории искусств и ремёсел таран, устроенные Декером (Decoeur), дали полезное действие от 0,6 до 0,9. На рисунке 2 видны особенности его устройства: оба клапана расположены один над другим и снабжены пружинами и винтами, чтобы регулировать их натяжение во время самой работы, изменяя число ударов от 40 при падении в 0,3 м до 220 при падении в 2 м; высота подъёма во всех опытах была 9м 15 см.
Рис. 2. Гидравлический таран Декера
При впускании воздуха через боковой клапан, не изображённый на рис. 2, таран работает без шума, но полезное действие и наибольшая возможная высота подъёма уменьшаются. Хорошие результаты действия Таранa настолько зависят от своевременного закрывания выпускного («стопорного») клапана, что для больших машин Персалль (Pearsall) нашёл выгодным устроить для этой цели особую машину, приводимую в движение сжатым воздухом из-под колпака. Такой тип Таранa действует совершенно плавно, дает большой коэффициент полезного действия и может быть устроен в больших размерах. На том же принципе, Персалль устраивает гидравлический Таран для получения струи сжатого воздуха.
Расчёт
Расчёт коэффициента полезного действия гидравлического таранa очень прост, если ограничиться главными обстоятельствами явления. Пусть из пруда вытекает в единицу времени V1{\displaystyle V_{1}} единиц объёма воды и падает с малой высоты h{\displaystyle h}. А поднимаются в резервуар водопровода V2{\displaystyle V_{2}} единиц на большую высоту H{\displaystyle H}. Обозначим η{\displaystyle \eta } коэффициент полезного действия машины. Он равен отношению работы, совершённой машиной к работе падающей воды:
Для определения η{\displaystyle \eta } в разных случаях было сделано много опытов ещё в 1805 г. Эйтельвейном, позднее Мореном и др. Выяснилось, что коэффициент этот тем больше, чем ближе к единице отношение Hh{\displaystyle H:h}. По Эйтельвейну, когда H{\displaystyle H} в 20 раз больше h{\displaystyle h}, η=,2{\displaystyle \eta =0,2}; при H=8h{\displaystyle H=8h} η=,5{\displaystyle \eta =0,5}; при H=3h{\displaystyle H=3h} η=,7{\displaystyle \eta =0,7}. По данным начала XX века, полезное действие больше при больших падениях, чем при малых; так, при малых h{\displaystyle h} η=,4{\displaystyle \eta =0,4}, при средних 0,55, а при больших 0,7. Влияние же отношения высоты падения к высоте подъёма воды признается малым. Поэтому из V1=20{\displaystyle V_{1}=20}(литров) можно рассчитывать, например, поднять 2 л на 7 метров, 1 л на 14 метр, и только пол-литра на 28 м, если при данном H{\displaystyle H} η{\displaystyle \eta } = 0,1 для взятого тарана, труба, приводящая воду, должна быть достаточной длины, чтобы масса заключающейся в ней воды была значительна: по Эйтельвейну, она должна превышать H{\displaystyle H} на число футов, равное отношению H{\displaystyle H} к h{\displaystyle h}, и во всяком случае быть не короче, чем пятикратная высота подъёма, так что при коротких расстояниях её приходится намеренно изгибать. Диаметр клапана б должен быть равен диаметру приводной трубы, а этот последний в футах равен 260(V1+V2){\displaystyle 2{\sqrt {60(V_{1}+V_{2})}}}, где V1{\displaystyle V_{1}} и V2{\displaystyle V_{2}} даны в кубических футах. Объём колпака г делают равным объёму приводной трубы. Оба клапана должны быть как можно ближе один к другому. В настоящее время гидравлический таран употребляется довольно часто для поднятия небольшого количества воды для хозяйственных целей.
Изменение давления определяется по формуле Жуковского:
Δp=ρ(v−v1)v{\displaystyle \Delta p=\rho (v_{0}-v_{1})v},
где ρ — плотность жидкости, v{\displaystyle v_{0}} и v1{\displaystyle v_{1}} — средние скорости воды до и после закрытия клапана, v — скорость распространения ударной волны в жидкости. Эту скорость можно рассчитать по формуле:
v=1ρβ+DρEd,{\displaystyle v={\frac {1}{\sqrt {\rho \beta +{\frac {D\rho }{Ed}}}}},},
где E — модуль упругости стены, β{\displaystyle \beta } — сжимаемость жидкости, d — толщина стен трубы, а D — её диаметр.
Коэффициенты упругости различных материалов:
- вода — 2⋅109 Н/м²;
- чугун — 100⋅109 Н/м²;
- сталь — 200⋅109 Н/м²;
- медь — 123⋅109 Н/м²;
- алюминий — 71⋅109 Н/м²;
- полистирол — 3,2⋅109 Н/м²;
- стекло — 70⋅109 Н/м²;
Предел значения V равен 1414 м/с (скорость звука в воде).
КПД гидротаранного насоса зависит от отношения H/h, где h — высота попадающей в резервуар А воды, а H — требуемая высота поднятия.
Принцип действия гидротарана:
Ниже на рисунке изображена принципиальная схема гидротарана.
- 1. Питающая труба
- 2. Отбойный клапан
- 3. Напорный клапан
- 4. Воздушный колпак
- 5. Напорный трубопровод
- 6. Устройство забора воды
Питающая труба (1) имеет относительно большую длину. Высота уровня воды в месте её забора и в месте установки отбойного клапана должна быть не менее 0,5 м (от перепада напрямую зависит производительность и высота напора).
Гидравлический таран работает следующим образом. При открытом отбойном клапане (2) вода, двигаясь по питающей трубе (1), сливается наружу. При достижении определенной скорости потока, вода подхватывает отбойный клапан (2) и ускоренно перемещает его верх. Клапан (2) резко перекрывает поток воды. Передние слои воды, упираясь в клапан (2), останавливаются, в то время как остальные слои столба воды в питающей трубе (1) по инерции продолжают движение. Вследствие этого, происходит резкое повышение давления в зоне отбойного клапана (2), и весь столб воды в трубе (1) останавливается. Процесс повышения давления в трубе (1) сопровождается упругим сжатием воды. После остановки воды в трубе (1) возникает обратная, отраженная волна давления в сторону устройства забора воды (6), приводящая к понижению давления у отбойного клапана (2), вплоть до разряжения. Отбойный клапан (2) открывается, и процесс повторяется снова. В моменты повышения давления в области отбойного клапана (2) вода через напорный клапан (3) поступает в полость воздушного колпака (4) или, иначе, пневмогидроаккумулятора. Далее вода, практически без пульсации, по напорному трубопроводу (5) поступает к месту назначения.
Описанное явление, когда разогнанный массивный столб воды в длинной питающей трубе (1) ударяет по внезапно закрытому отбойному клапану (2), называют гидравлическим ударом.
Что потребуется для изготовления гидротарана своими руками
Больших затрат на изготовление подобного изделия не потребуется. Основными деталями здесь будут два обратных клапана. Их диаметр зависит от необходимого напора воды. В сегодняшнем примере будут использоваться клапаны и трубы на полдюйма, однако если требуется, допустим, полив огорода, придётся подбирать более толстые элементы.
Помимо клапанов необходимо подготовить пластиковые трубы, пару тройников, колено, шаровой кран и пластиковую бутылку, которая будет использоваться в качестве расширительного бачка.
ФОТО: YouTube.comДля примера будут использованы обратные клапаны диаметром полдюйма
Как и почему работает гидротаран
Главная особенность данного насоса — он использует кинетическую энергию воды, которая уже находится в потоке. То есть, для подачи воды на высоту необходим перепад уровней. Он может быть минимальным — 0,5 м, но чем этот показатель больше, тем эффективнее работа насоса. Мы нарочно не приводим гидравлический расчёт — он крайне сложен и сводится лишь к оптимальной пропорции перепада высоты между точкой забора воды, рабочей частью насоса и верхней точкой слива. Поскольку это устройство будет установлено в конкретных условиях, все величины разумно определить по месту.
Вода, попадая в фидер, под действием гравитации стремится к нижней точке, создавая избыточное давление, на которое реагирует гидроклапан. В момент его срабатывания вода блокируется в закрытой системе и происходит явление гидроудара, который проталкивает воду через обратный клапан в расширительный бак. Эластичные стенки бака накапливают избыточное давление от гидроудара, но не в воде (она несжимаема), а в воздухе. Это давление и проталкивает воду по отводному каналу (шлангу, трубе), а обратный клапан не даёт давлению выровняться.
Принцип работы гидротаранного насоса на видео
После сброса давления в расширительный бак гидроклапан снова открывается и цикл возобновляется. Подача воды происходит импульсами. Многие уже догадались, что работа насоса становится возможна за счёт разности плотности сред — несжимаемой воды и воздуха, который легко аккумулирует давление. Вся сила гидроудара переходит в спрессовку газа (воздуха) в расширительном баке, который потом подаёт воду наверх.
История
В 1772 году англичанин Джон Уайтхёрст изобрёл и построил «пульсирующий двигатель», прообраз гидравлического тарана, и спустя три года опубликовал его описание. Устройство Уайтхёрста управлялось вручную. Первый автоматический гидротаранный насос изобрёл знаменитый француз Жозеф-Мишель Монгольфье совместно с Ами Арганом (A. Argand) в 1796 году. В 1797 году при помощи своего друга Мэтью Боултона Монгольфье получил британский патент на своё изобретение. В 1816 году сыновья Монгольфье запатентовали доработанную версию этого насоса.
В США гидротаранный насос впервые запатентовали Серно (J. Cerneau) и Халлет (S.S. Hallet) в 1809 году. В 1834 году американец Строубридж (H. Strawbridge) начал производство гидротаранных насосов.
В 1930 году профессор С. Д. Чистопольский в работе «Гидравлический таран» опубликовал метод теоретического расчёта таких устройств, основанный на теории гидравлического удара, созданной профессором Н. Е. Жуковским в 1897—1898 годах.
Гидротаранный насос своими руками
Эта конструкция является аналогом редуктора. То есть, благодаря течению происходит циркуляция определенного объема воды. Эту энергию мы можем преобразовать для подачи меньшего объема воды на нужную нам высоту. Такой насос будет работать примерно так, как гидравлическая турбина. Но эта конструкция гораздо проще, на ее сборы надо мало средств и времени, а еще такой гидротарнный насос очень долговечный, тут изнашиваются разве что клапана. Итак, рассмотрим более подробно, как же собрать такой насос!
Как все работаетСистема состоит из двух клапанов, один работает на выпуск воды, а другой на впуск. Тот клапан, что работает на выпуск, нужен для того, чтобы удерживать воду в шланге, которую мы будем поднимать для своих целей на нужную высоту. А что касается второго клапана, он находится в открытом состоянии лишь тогда, когда на него действует небольшое давление воды. Когда скорость потока вытекающей воды возрастает, растет и давление, как следствие клапан запирается. Именно в этот момент происходит гидроудар и вода поднимается вверх по отборному шлангу. Потом давление стабилизируется, клапан снова открывается и так далее.
У автора машина поднимает воду всего на один метр. Производительность устройства будет зависеть от перепада высот и от объема протекающей через устройство воды.
В системе предусмотрена емкость с воздухом. Она работает в качестве амортизатора для импульса, то есть, позволяет больше забрать воды, увеличивает КПД.
Список материалов:— пластиковые трубы;— два клапана;— кран (необязательно);— два пластиковых тройника для труб;— бутылка;— шланги и другое.
Список инструментов:— токарный станок (автор нарезал резьбу на трубах);— ножовка по металлу;— клей для труб, фум-лента и другие мелочи.
Процесс изготовления гидротарана:
Шаг первый. Подготавливаем трубыАвтор нарезал на токарном станке на трубах резьбу. Это избавило от потребности покупать переходники, чтобы установить клапана.
Шаг третий. ИспытанияПриступаем к испытаниям. Автор подает воду из емкости, имитируя реку. Его насос может подавать воду на высоту не более одного метра выше от источника. В целом, систему можно модернизировать и увеличить КПД.
На этом все, проект окончен. Надеюсь, самоделка вам понравилась. Удачи и творческих вдохновений, если надумаете повторить. Не забывайте делиться своими самоделками с нами.
Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!
*Заполняя форму вы соглашаетесь на обработку персональных данных
Сборка гидротарана: некоторые нюансы
Для удобства работы с гидротаранным насосом на первый обратный клапан стоит установить дополнительный кран, хотя можно обойтись и обычной заглушкой. Пока она закрыта, вода через насос проходить не будет. На фотопримере ниже можно увидеть уже собранную конструкцию, на которой сверху установлен расширитель.
ФОТО: YouTube.comТак выглядит собранный гидротаран
Теперь стоит разобраться, по какому принципу он работает.
Принцип действия гидротаранного насоса
Подача воды в сам гидротаран производится по чёрному шлангу из резервуара. Если требуется забор из реки или озера, необходимо обустроить всё так, чтобы сам насос находился не менее, чем на метр ниже уровня поверхности воды. Если это условие не соблюдено, работать гидротаран не будет.
Поступающая вода проходит через обратный клапан, направленный вверх, попадая в расширитель, который помогает в перекачке. Далее она поступает через запорную арматуру в более тонкий шланг, по которому уже может подняться на более высокий уровень. Подобную систему можно использовать не только для полива, но и для душевой, если вода в реке достаточно чиста. А вот использование стационарного резервуара здесь будет нерентабельным. Часть воды будет вытекать на землю через обратный клапан, направленный вниз.
ФОТО: YouTube.comВода поступает через чёрный шланг на обратный клапан, направленный вверх
Далее можно увидеть верхнюю часть гидротарана и отходящий более тонкий шланг.
ФОТО: YouTube.comВода будет подаваться на более высокий уровень по тонкому шлангу
Первый запуск гидротаранного насоса
Если все необходимые параметры по уровням соблюдены, то при открытии первого обратного клапана (направление вниз) из него толчками начнёт вытекать вода. Именно эта пульсация и позволяет перекачивать жидкость на более высокий уровень. Если гидротаран расположить возле реки или озера, эти излишки будут стекать обратно в водоём.
При необходимости использования подобного насоса для летнего душа стоит продумать отвод воды в сторону. В противном случае вытекающая из клапана и стекающая в реку вода будет поднимать грязь. А мыться под таким душем вряд ли кому понравится.
ФОТО: YouTube.comЕсли вывернуть заглушку первого обратного клапана, гидротаран начнёт работать
Рассмотренный сегодня пример представлен лишь для того, чтобы читателю стал понятен принцип работы гидротарана, поэтому и в качестве водоёма была использована обычная металлическая ёмкость.
ФОТО: YouTube.comЗабор воды гидротараном из подобного резервуара нерентабелен – половина окажется на земле
Водяной насос без питания своими руками
Проток мгновенно закроется, произойдет гидроудар. Динамическое давление воды откроет обратные клапаны, вода поступит в воздушный колпак 11 и далее — в сеть потребителя и в гидроаккумулятор 12, а затем — в цилиндр 2. Под действием этого давления поршень начнет движение влево — процесс повторится и будет повторяться автоматически уже без участия пусковой емкости 1, которая пополнится при заполнении цилиндра 2.
Этой машине не нужен слив «лишней» воды, что не только повышает экономичность и удобство эксплуатации, но и делает машину почти универсальной — она может работать на любой реке.
Виды
Ученые предпринимают попытки устранить недостатки насоса в классическом исполнении. Например, ставится задача, как заставить работать гидротаран в стоячей воде, которая содержится в прудах, озерах и колодцах. Этим вопросом задались В. В. Марухин и В. А. Кутьенков. Они решили изменить существовавшую конструкцию – поставили отбойный клапан перед напорным, а место слива заглушили.
В этом случае отпадает необходимость обеспечивать выход всей воды из нагнетательной трубы. Появляется возможность погрузить устройство в стоячую воду. При этом сам пруд или озеро становится питающим резервуаром, а наклон нагнетательной трубы уже необязателен.
Гидротаран с одной ёмкостью большего объёма
Ее можно положить горизонтально, так как рабочее давление создается за счет глубины размещения насоса. Совсем убрать нагнетательную трубу в гидротаране Марухина нельзя. Ее назначение состоит в формировании направленного потока, обособленного от общей водяной массы и дающего гидроудар.
Авторы с помощью расчетов установили, что минимальная глубина, необходимая для работы такого оснащения, – 15 метров. Только при таких условиях будет действовать давление, которое заставит поток двигаться и обеспечит гидроудар.
Еще один изобретатель М. Н. Бурангулов представил научному сообществу свою версию подводного гидротарана – он отличается от аналогов повышенной производительностью. Гидравлический удар здесь используется максимально полно. Этот эффект достигается за счет особого устройства отбойного клапана.
Он состоит из двух дисков, один из которых жестко зафиксирован, а другой имеет возможность поворачиваться вокруг своей оси. Здесь добавлены дополнительные конструкционные элементы – шток, поршень. В такой системе отбойный клапан мгновенно закрывается, что делает удар от водяного столба мощнее, а КПД насоса в целом увеличивается.
Гидротаран Рогозина – еще одна разновидность приспособления для сбора природной жидкости. Особенным успехом разработки изобретателя пользовались в СССР. Рогозин предложил объединить гидротаран с турбиной, к которой подключен электрогенератор. Водоподъемное устройство в этом случае становится также источником энергии.
Турбина, соединенная с гидротараном, работает при таком течении, при котором функционировать самостоятельно она не способна
Но здесь следует особое внимание уделять тому, чтобы проходящая через отбойный клапан вода тут же освобождала место для снова подступившей порции жидкости
Фидер и гидроклапан
Эти два элемента — основные в конструкции, которую планируется создать своими руками. От их размеров и устройства зависит вся работа агрегата.
Фидер
Представляет собой закрытый канал, соединяющий точку водозабора и точку гидроудара. В идеале это длинная ровная труба, расположенная под уклоном. Вода, находящаяся в трубе, и есть тот самый поршень, который создаёт избыточное давление — причину гидроудара. Поэтому чем больше сечение, тем мощнее будет таран. Диаметр трубы фидера должен лежать в разумных пределах — от 50 до 150 мм. Эта величина должна соотноситься с диаметром остальных каналов системы и требуемой высотой подачи.
В заборной части фидера рекомендуем установить раструб для лучшего улавливания воды.
Оптимальные соотношения диаметров гидротаранного насоса
Фидер, мм | Система, мм |
50 | 16 |
100 | 32 |
150 | 32–50 |
В последнем случае при длине фидера 10 м и перепаде в 1,5 м вода будет подаваться на высоту в 10 м со скоростью около 1500 л/час.
Гидроклапан
Заводская модель этого устройства может оказаться дорога за счёт материала, прокладок и пружины, выставленной на определённое давление. В нашем случае, когда мы используем бесплатную энергию, которую просто нет смысла экономить или учитывать, достаточно самого факта блокировки потока воды. Для этого вполне подойдёт гидроклапан собственного изготовления.
Насос с самодельным гидроклапаном — видео установки с комментариями
Идеальное место установки такого насоса — пороги реки с их значительными перепадами или ручьи.